CSE 484 / CSE M 584: Computer Security and Privacy

Autumn 2019

Tadayoshi (Yoshi) Kohno yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Franzi Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...

What's Wrong With This Picture?

What's Wrong With This Picture?

Course Staff

- Instructor:
 - Tadayoshi Kohno (Yoshi)
- TAs:
 - Isaac Ahn
 - David Chen
 - Chris Gao
 - Melissa Hovik
 - Stephen Jonany
 - Jack Xu

Communication

- yoshi@cs.washington.edu
 - Use this if something is sensitive, confidential, etc.
 - Please put "484" in subject line, and follow up if I don't reply
- cse484-tas@cs.washington.edu
 - Use this to reach all course staff
- Google Group
 - Use this if other students in the class would benefit from your question/answers
- We will do our best to be responsive, but **please be professional**, and plan ahead!

Quiz Sections and Office Hours

- Quiz sections on Thursdays:
 - 1:30-2:20pm, CSE2 G10
 - 2:30-3:20pm, CSE2 G10
 - 3:30-4:20pm, CSE2 G10
- Office hours
 - To be announced later this week

Prerequisites (CSE 484)

- Required: Data Abstractions (CSE 332)
- Required: Hardware/Software Interface (CSE 351)
- Assume: Working knowledge of C and assembly
 - One of the labs will involve writing buffer overflow attacks in C
 - You must have detailed understanding of x86 architecture, stack layout, calling conventions, etc.
- Assume: Working knowledge of software engineering tools for Unix environments (gdb, etc)
- Assume: Working knowledge of Java and JavaScript
- Assume: Ability to learn new programming languages easily

Prerequisites (CSE 484)

- Recommended: Computer Networks; Operating Systems
 - Will help provide deeper understanding of security mechanisms and where they fit in the big picture
- Recommended: Complexity Theory; Discrete Math; Algorithms
 - Will help with the more theoretical aspects of this course.

Prerequisites (CSE 484)

- Most of all: Eagerness to learn!
 - This is a 400 level course.
 - We expect you to push yourself to learn as much as possible.
 - We expect you to be a strong, independent learner capable of learning new concepts from the lectures, the readings, and on your own.

Course Logistics (CSE 484)

- Lectures: MWF: 10:30-11:20am
 Sections: Thurs: 1:30-2:20pm, 2:30-3:20pm, 3:30-4:20pm
- Security is a contact sport!
- Labs (45% of the grade)
 - Hands-on experience with security issues
 - Can generally be done in teams of 3 students (see specific lab descriptions for details)
- Homework (25% of grade)
- Participation and in-class activities (10% of the grade)
- Final project (20% of the grade)

Course Logistics (CSE M 584)

- Same as before, but...
- Labs (42% of the grade) [-3%]
- Homework (22% of grade) [-3%]
- Research readings (10%) [+10%]
- Participation and in-class activities (10%)
- Final (16% of the grade) [-4%]

Labs

- General plan:
 - 3 labs (likely, possibly 2, definitely not 4)
 - First lab out soon, likely next week
 - Submit to Canvas
 - Groups of up to three generally allowed (check each project page for details)

Labs

• First lab: Software security

 Buffer overflow attacks, double-free exploits, format string exploits, ...

- Second lab: Web security
 XSS attacks, SQL injection, ...
- Third lab: Smart homes

Homework

- 2 or 3 homeworks distributed across quarter
 - http://courses.cs.washington.edu/courses/ cse484/19au/assignments.html
 - First homework out now (due April 12)

• Do now (no later than October 2): sign ethics form!

Final Project

- No midterm or final exam!
- Instead: 12-15 min video about a security/privacy topic of your choice
 - Groups of up to 3 people
 - Security is a broad field, and this class can't remotely cover everything – this is your chance to explore a security or privacy topic in more detail!
 - Multiple checkpoint deadlines throughout quarter
- Details on website soon (will be linked from assignment page)

Participation

In-class activities (like the one from today!)

- You'll have 5 free in-class days (for travel, etc)

- We also encourage contributions to the discussion forum (e.g., questions, general discussion)
- In class: Class too large to make grading upon participation fair, but you are still encouraged to speak up in class, ask questions, etc
- Discussion section: More opportunities for discussion

Ethics

- To learn to defend systems, you will learn to attack them. You must use this knowledge ethically.
- In order to get a non-zero grade in this course, you must electronically sign the "Security and Privacy Code of Ethics" form by 11:59pm on Wed, October 2.

Late Submission Policy

- 3 free late days, no questions asked
 - Cumulative, throughout the quarter
 - Use however you wish (all at once, 3x1, ...)
- After that, late assignments will be dropped 20% per calendar day.
 - Late days will be rounded up
 - So an assignment turned in 26 hours late will be downgraded 40%
 - See website for exceptions -- some assignments must be turned in on time

Course Materials

- Textbook (suggested):
 - Daswani, Kern, Kesavan, "Foundations of Security"
 - Additional materials linked to from course website
- Attend lectures
 - Lectures will <u>not</u> follow the textbook and will cover a significant amount of material that is <u>not</u> in the textbook
 - Lectures will focus on "big-picture" principles and ideas
- Attend sections
 - Details not covered in lecture, especially about homeworks and labs
 - More opportunity for discussion

Other Helpful Books (Online)

- Ross Anderson, "Security Engineering"
 - Focuses on design principles for secure systems
 - Wide range of entertaining examples: banking, nuclear command and control, burglar alarms
- Menezes, van Oorschot, and Vanstone, "Handbook of Applied Cryptography"
- Many many other useful books exist, not all online

Other Books, Movies, ...

- Pleasure books include:
 - Little Brother by Cory Doctorow
 - Available online here http://craphound.com/littlebrother/download/
 - Cryptonomicon and REAMDE by Neal Stephenson
 - The Art of Intrusion and The Art of Deception by Kevin Mitnick
 - Many more -- please feel free to post your favorites in the Google Group!
- Movies include:
 - Hackers
 - Sneakers
 - Die Hard 4
 - WarGames
 - Many more -- please feel free to post your favorites in the Google Group!
- Historical texts include:
 - The Codebreakers by David Kahn
 - The Code Book by Simon Singh

Guest Lectures

- We will have a few guest lectures throughout the quarter
 - Useful to give you a different perspective: research, industry, government, legal

Mailing List

multi_csem584a_au19@uw.edu

- Make sure you're on the mailing list
 - We'll send a test mail after class; everyone enrolled should receive it
- URL for mailing list on course website
- We will use the mailing list for announcements; please use the Google Group for discussions

Google Group

- We've set up a Google Group for this course, to discuss assignments:
 - https://groups.google.com/a/cs.washington.edu/forum/#!foru m/csep546-19au-discussion
 - Find link off "Administrivia" tab on course page
- Please use it to discuss the homework assignments and labs and other general class materials
- You can also use it to exercise the "security mindset"
 - Discussions of how movies get security right or wrong
 - Discussions of news articles about security (or not about security, but that miss important security-related things)
 - Discussions about security flaws you observe in the real world

- ...

What Does "Security" Mean to You?

- See worksheet, Q1 + Q2
- (Feel free to answer Q4 + Q5 now or later)

How Systems Fail

Systems may fail for many reasons, including:

- Reliability deals with accidental failures
- Usability deals with problems arising from operating mistakes made by users
- Security deals with intentional failures created by intelligent parties
 - Security is about computing in the presence of an adversary
 - But security, reliability, and usability are all related

Challenges: What is "Security"?

- What does security mean?
 - Often the hardest part of building a secure system is figuring out what security means
 - What are the **assets** to protect?
 - What are the **threats** to those assets?
 - Who are the **adversaries**, and what are their **resources**?
 - What is the security policy or goals?
 - Perfect security does not exist!
 - Security is not a binary property
 - Security is about risk management

Current events, security reviews, and other discussions are designed to exercise our thinking about these issues.

To Do

- Ethics form (due Wed October 2)
- Homework #1 (due Fri October 4)
 - Now: Start forming groups (e.g., use discussion board) and thinking about events and technologies you'd like to review.

Questions?

yoshi@cs.washington.edu

cse484-tas@cs.washington.edu