
CSE 484 In-Class Worksheet #6 – Autumn 2018

Name: ____________________________ UWNetID: _____________ Date: ____________

Email address: __

Partner names for this activity: ____________________________________

Will you want to pick up your worksheet later? Circle one: Yes / No

Q1: What might an attacker be able to accomplish even if they cannot execute code on the

stack?

Q2: What might be a good value for a stack canary?

Q3: The goal of this code is to allow a program to open regular files, but not symlinks.

int openfile(char *path) {

struct stat s;

if (stat(path, &s) < 0)

return -1;

if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");

return -1;

}

return open(path, O_RDONLY);

}

Can you spot any potential problems? What problems do you spot, if any?

Q4: Consider this code:

 char buf[80];

 void vulnerable() {

 int len = read_int_from_network();

 char *p = read_string_from_network();

 if (len > sizeof buf) {

 error("length too large, nice try!");

 return;

 }

 memcpy(buf, p, len);

 }

And note the following definitions:

 void *memcpy(void *dst, const void * src, size_t n);

 typedef unsigned int size_t;

Can you spot any potential problems? What problems do you spot, if any?

Q5: Consider this code:

 size_t len = read_int_from_network();

 char *buf;

 buf = malloc(len+5);

 read(fd, buf, len);

Can you spot any potential problems? What problems do you spot, if any?

Q6: What issues, if any, do you see with the following code for password comparisons?

 // The following is the functional description of the code -- what it should do

PwdCheck(RealPwd, CandidatePwd) should:

 Return TRUE if RealPwd matches CandidatePwd

 Return FALSE otherwise

RealPwd and CandidatePwd are both 8 characters long

// The following is the implementation, like on the TENEX system

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

 for i = 1 to 8 do

 if (RealPwd[i] != CandidatePwd[i]) then

 return FALSE

 return TRUE

