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Admin

• HW 3 due Nov 30

• Lab 3 out today (this afternoon), due Dec 7 (Quiz Section on Nov 
29)

• Wednesday evening lecture (tonight): Extra credit in-class 
assignment

• Next Monday: Guest Lecturer: Emily McReynolds, Microsoft

• Next Wednesday: Ivan Evtimov, Adversarial Machine Learning

• Next Friday: No lecture – extra time to work on your projects and 
labs
– But there is an extra credit in-class assignment, if you would like (2 more 

Enigma talks)
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Admin

• Final Project Proposals: Looked great!

• Final Project Checkpoint: Nov 30 – preliminary outline and 
references

• Final Project Presentation: Dec 10 – 12-15-minute video –
must be on time

• Explore something of interest to you, that could hopefully 
benefit you or your career in some way – technical topics, 
current events, etc
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Review: Challenges with Isolated 
Apps

So mobile platforms isolate applications for 
security, but…

1. Permissions: How can applications access 
sensitive resources?

2. Communication: How can applications 
communicate with each other?
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Review: Two Ways to Ask the User

Prompts (time-of-use) Manifests (install-time)

Out of context; not 
understood by users.

In practice, both are overly permissive: 
Once granted permissions, apps can misuse them.

Disruptive, which leads to 
prompt-fatigue.
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Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).

• Big change! Now app developers need to check for 
permissions or catch exceptions.
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Over-Permissioning

• Android permissions are badly documented.

• Researchers have mapped APIs  permissions.
www.android-permissions.org (Felt et al.), http://pscout.csl.toronto.edu (Au et al.)

[Felt et al.]
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Let this application 
access my location now.

Insight:
A user’s natural UI actions within 
an application implicitly carry 
permission-granting semantics. 
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Improving Permissions:
User-Driven Access Control

[Roesner et al]



Let this application 
access my location now.

Insight:
A user’s natural UI actions within 
an application implicitly carry 
permission-granting semantics. 
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Study:
Many users already believe (52% of 186) 
– and/or desire (68%) – that resource access 
follows the user-driven access control model.

Improving Permissions:
User-Driven Access Control

[Roesner et al]



New OS Primitive: 
Access Control Gadgets (ACGs)

Approach: Make resource-related UI elements first-class 
operating system objects (access control gadgets).

• To receive resource access, applications must embed a 
system-provided ACG.

• ACGs allow the OS to capture the user’s permission 
granting intent in application-agnostic way.
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Permission Re-Delegation

• An application without a permission gains 
additional privileges through another application.

• Settings application is                     
deputy: has permissions,
and accidentally exposes                                             
APIs that use those                   
permissions.

API

Settings

Demo 
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]
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Aside: Incomplete Isolation
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Embedded UIs and libraries always run with the host 
application’s permissions! (No same-origin policy here…)

[Shekhar et al.]

Like us on 
Facebook!

Ad from 
ad library

Social button 
from Facebook 
library

Map from 
Google 
library



Android Application Signing

• Apps are signed

– Signed application certificate defines which user ID is 
associated with which applications

– Different apps run under different UIDs

• Shared UID feature

– Shared Application Sandbox possible, where two or 
more apps signed with same developer key can declare 
a shared UID in their manifest
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Shared UIDs

• App 1:  Requests GPS / camera access

• App 2:  Requests Network capabilities

• Generally:
– First app can’t exfiltrate information

– Second app can’t exfiltrate anything interesting

• With Shared UIDs (signed with same private key)
– Permissions are a superset of permissions for each app

– App 1 can now exfiltrate; App 2 can now access GPS / 
camera
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File Permissions

• Files written by one application cannot be 
read by other applications
– Previously, this wasn’t true for files stored on the SD 

card (world readable!) – Android cracked down on this

• It is possible to do full file system encryption
– Key = Password/PIN combined with salt, hashed
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Android Permission 
Recommendations

• Only use the permissions necessary for your app to 
work

• Pay attention to permissions required by libraries

• Be transparent

• Make system accesses explicit. Providing continuous 
indications when you access sensitive capabilities 
(for example, the camera or microphone) …

https://developer.android.com/training/permissions/usa
ge-notes
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(2) Inter-Process Communication

• Primary mechanism in Android: Intents

– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name

• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW) 
and/or data (URI and MIME type)

• Apps specify Intent Filters for their components.
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Unauthorized Intent Receipt

• Attack #1: Eavesdropping / Broadcast Thefts

– Implicit intents make intra-app messages public.

• Attack #2: Activity Hijacking

– May not always work:

• Attack #3: Service Hijacking

– Android picks one at random 
upon conflict!

[Chin et al.]
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Intent Spoofing

• Attack #1: General intent spoofing

– Receiving implicit intents makes component public.

– Allows data injection.

• Attack #2: System intent spoofing

– Can’t directly spoof, but victim apps often don’t check 
specific “action” in intent.

[Chin et al.]
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Memory Management

• Address Space Layout Randomization to 
randomize addresses on stack

• Hardware-based No eXecute (NX) to prevent code 
execution on stack/heap

• Stack guard derivative

• Some defenses against double free bugs (based on 
OpenBSD’s dmalloc() function)

• etc.
[See http://source.android.com/tech/security/index.html]
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Android Fragmentation

• Many different variants of 
Android (unlike iOS)

– Motorola, HTC, Samsung, …

• Less secure ecosystem

– Inconsistent or incorrect 
implementations

– Slow to propagate kernel 
updates and new versions

[https://developer.android.com/about/dashbo
ards/index.html] 
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What about iOS?

• Apps are sandboxed

• Encrypted user data

• App Store review process is (maybe) stricter

– But not infallible: e.g., see Wang et al. “Jekyll on iOS: 
When Benign Apps Become Evil” (USENIX Security 2013)
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What’s Next?

• This about these issues for the next 
computing platform

– Augmented Reality?

– Cars?

– Smarthomes?
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Usability 
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On Usability

• Why is usability important?
– People are the critical element of any computer 

system
• People are the real reason computers exist in the first 

place

– Even if it is possible for a system to protect against 
an adversary, people may use the system in other, 
less secure ways

– Usability errors can lead people to think that they 
are using a secure setting when in fact they are not 
(e.g., certain password managers)
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Root Causes?

• Computer systems are complex; users lack intuition

• Users in charge of managing own devices

– Unlike other complex systems, like healthcare or cars.

• Hard to gauge risks

– “It won’t happen to me!”

• Annoying, awkward, difficult

• Social issues

– Send encrypted emails about lunch?...
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Question

• What does usable security mean? 

• What does it mean for a system to have 
usable security?
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How to Improve?

• Security education and training

• Help users build accurate mental models

• Make security invisible

• Make security the least-resistance path

• …?
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