
CSE 484 / CSE M 584: Computer Security and Privacy

Mobile
Usability

Autumn 2018

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Ada Lerner, John Manferdelli, John Mitchell,
Franziska Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:yoshi@cs.Washington.edu

Admin

• HW 3 due Nov 30

• Lab 3 out today (this afternoon), due Dec 7 (Quiz Section on Nov
29)

• Wednesday evening lecture (tonight): Extra credit in-class
assignment

• Next Monday: Guest Lecturer: Emily McReynolds, Microsoft

• Next Wednesday: Ivan Evtimov, Adversarial Machine Learning

• Next Friday: No lecture – extra time to work on your projects and
labs
– But there is an extra credit in-class assignment, if you would like (2 more

Enigma talks)

11/28/2018 CSE 484 / CSE M 584 2

Admin

• Final Project Proposals: Looked great!

• Final Project Checkpoint: Nov 30 – preliminary outline and
references

• Final Project Presentation: Dec 10 – 12-15-minute video –
must be on time

• Explore something of interest to you, that could hopefully
benefit you or your career in some way – technical topics,
current events, etc

11/28/2018 CSE 484 / CSE M 584 3

Review: Challenges with Isolated
Apps

So mobile platforms isolate applications for
security, but…

1. Permissions: How can applications access
sensitive resources?

2. Communication: How can applications
communicate with each other?

11/28/2018 4

Review: Two Ways to Ask the User

Prompts (time-of-use) Manifests (install-time)

Out of context; not
understood by users.

In practice, both are overly permissive:
Once granted permissions, apps can misuse them.

Disruptive, which leads to
prompt-fatigue.

11/28/2018 5

Android 6.0: Prompts!

• First-use prompts for sensitive permission (like iOS).

• Big change! Now app developers need to check for
permissions or catch exceptions.

11/28/2018 6

Over-Permissioning

• Android permissions are badly documented.

• Researchers have mapped APIs  permissions.
www.android-permissions.org (Felt et al.), http://pscout.csl.toronto.edu (Au et al.)

[Felt et al.]

11/28/2018 7

http://www.android-permissions.org/
http://pscout.csl.toronto.edu/

Let this application
access my location now.

Insight:
A user’s natural UI actions within
an application implicitly carry
permission-granting semantics.

11/28/2018 9

Improving Permissions:
User-Driven Access Control

[Roesner et al]

Let this application
access my location now.

Insight:
A user’s natural UI actions within
an application implicitly carry
permission-granting semantics.

11/28/2018 10

Study:
Many users already believe (52% of 186)
– and/or desire (68%) – that resource access
follows the user-driven access control model.

Improving Permissions:
User-Driven Access Control

[Roesner et al]

New OS Primitive:
Access Control Gadgets (ACGs)

Approach: Make resource-related UI elements first-class
operating system objects (access control gadgets).

• To receive resource access, applications must embed a
system-provided ACG.

• ACGs allow the OS to capture the user’s permission
granting intent in application-agnostic way.

11/28/2018 11

Permission Re-Delegation

• An application without a permission gains
additional privileges through another application.

• Settings application is
deputy: has permissions,
and accidentally exposes
APIs that use those
permissions.

API

Settings

Demo
malware

toggleWifi()

pressButton(0)

Permission System

toggleWifi()

[Felt et al.]

11/28/2018 12

Aside: Incomplete Isolation

11/28/2018 13

Embedded UIs and libraries always run with the host
application’s permissions! (No same-origin policy here…)

[Shekhar et al.]

Like us on
Facebook!

Ad from
ad library

Social button
from Facebook
library

Map from
Google
library

Android Application Signing

• Apps are signed

– Signed application certificate defines which user ID is
associated with which applications

– Different apps run under different UIDs

• Shared UID feature

– Shared Application Sandbox possible, where two or
more apps signed with same developer key can declare
a shared UID in their manifest

11/28/2018 14

Shared UIDs

• App 1: Requests GPS / camera access

• App 2: Requests Network capabilities

• Generally:
– First app can’t exfiltrate information

– Second app can’t exfiltrate anything interesting

• With Shared UIDs (signed with same private key)
– Permissions are a superset of permissions for each app

– App 1 can now exfiltrate; App 2 can now access GPS /
camera

11/28/2018 15

File Permissions

• Files written by one application cannot be
read by other applications
– Previously, this wasn’t true for files stored on the SD

card (world readable!) – Android cracked down on this

• It is possible to do full file system encryption
– Key = Password/PIN combined with salt, hashed

11/28/2018 16

Android Permission
Recommendations

• Only use the permissions necessary for your app to
work

• Pay attention to permissions required by libraries

• Be transparent

• Make system accesses explicit. Providing continuous
indications when you access sensitive capabilities
(for example, the camera or microphone) …

https://developer.android.com/training/permissions/usa
ge-notes

11/28/2018 CSE 484 / CSE M 584 17

https://developer.android.com/training/permissions/usage-notes

(2) Inter-Process Communication

• Primary mechanism in Android: Intents

– Sent between application components
• e.g., with startActivity(intent)

– Explicit: specify component name

• e.g., com.example.testApp.MainActivity

– Implicit: specify action (e.g., ACTION_VIEW)
and/or data (URI and MIME type)

• Apps specify Intent Filters for their components.

11/28/2018 18

Unauthorized Intent Receipt

• Attack #1: Eavesdropping / Broadcast Thefts

– Implicit intents make intra-app messages public.

• Attack #2: Activity Hijacking

– May not always work:

• Attack #3: Service Hijacking

– Android picks one at random
upon conflict!

[Chin et al.]

11/28/2018 19

Intent Spoofing

• Attack #1: General intent spoofing

– Receiving implicit intents makes component public.

– Allows data injection.

• Attack #2: System intent spoofing

– Can’t directly spoof, but victim apps often don’t check
specific “action” in intent.

[Chin et al.]

11/28/2018 20

Memory Management

• Address Space Layout Randomization to
randomize addresses on stack

• Hardware-based No eXecute (NX) to prevent code
execution on stack/heap

• Stack guard derivative

• Some defenses against double free bugs (based on
OpenBSD’s dmalloc() function)

• etc.
[See http://source.android.com/tech/security/index.html]

11/28/2018 21

http://source.android.com/tech/security/index.html

Android Fragmentation

• Many different variants of
Android (unlike iOS)

– Motorola, HTC, Samsung, …

• Less secure ecosystem

– Inconsistent or incorrect
implementations

– Slow to propagate kernel
updates and new versions

[https://developer.android.com/about/dashbo
ards/index.html]

11/28/2018 22

What about iOS?

• Apps are sandboxed

• Encrypted user data

• App Store review process is (maybe) stricter

– But not infallible: e.g., see Wang et al. “Jekyll on iOS:
When Benign Apps Become Evil” (USENIX Security 2013)

11/28/2018 23

What’s Next?

• This about these issues for the next
computing platform

– Augmented Reality?

– Cars?

– Smarthomes?

11/28/2018 24

Usability

11/28/2018 CSE 484 / CSE M 584 - Fall 2017 25

On Usability

• Why is usability important?
– People are the critical element of any computer

system
• People are the real reason computers exist in the first

place

– Even if it is possible for a system to protect against
an adversary, people may use the system in other,
less secure ways

– Usability errors can lead people to think that they
are using a secure setting when in fact they are not
(e.g., certain password managers)

11/28/2018 26

Root Causes?

• Computer systems are complex; users lack intuition

• Users in charge of managing own devices

– Unlike other complex systems, like healthcare or cars.

• Hard to gauge risks

– “It won’t happen to me!”

• Annoying, awkward, difficult

• Social issues

– Send encrypted emails about lunch?...

11/28/2018 CSE 484 / CSE M 584 27

Question

• What does usable security mean?

• What does it mean for a system to have
usable security?

11/28/2018 CSE 484 / CSE M 584 28

How to Improve?

• Security education and training

• Help users build accurate mental models

• Make security invisible

• Make security the least-resistance path

• …?

11/28/2018 CSE 484 / CSE M 584 29

