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Admin

• HW 3 due Nov 30

• Lab 3 out this week, due Dec 7 (Quiz Section on Nov 29)
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Admin

• Final Project Proposals: Looked great!

• Final Project Checkpoint: Nov 30 – preliminary outline and 
references

• Final Project Presentation: Dec 10 – 12-15-minute video –
must be on time

• Explore something of interest to you, that could hopefully 
benefit you or your career in some way – technical topics, 
current events, etc
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Review: Onion Routing
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[Reed, Syverson, Goldschlag 1997]

• Sender chooses a random sequence of routers

• Some routers are honest, some controlled by attacker

• Sender controls the length of the path



Review: Route Establishment
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• Routing info for each link encrypted with router’s public key

• Each router learns only the identity of the next router



Tor

• Second-generation onion routing network

– http://tor.eff.org

– Developed by Roger Dingledine, Nick Mathewson 
and Paul Syverson

– Specifically designed for low-latency anonymous 
Internet communications

• Running since October 2003

• “Easy-to-use” client proxy

– Freely available, can use it for anonymous browsing
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Tor Circuit Setup (1)
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• Client proxy establishes a symmetric session 
key and circuit with Onion Router #1



Tor Circuit Setup (2)
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• Client proxy extends the circuit by establishing 
a symmetric session key with Onion Router #2

– Tunnel through Onion Router #1



Tor Circuit Setup (3)
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• Client proxy extends the circuit by establishing 
a symmetric session key with Onion Router #3

– Tunnel through Onion Routers #1 and #2



Using a Tor Circuit
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• Client applications connect and communicate 
over the established Tor circuit.



Tor Management

• Many applications can share one circuit
– Multiple TCP streams over one anonymous connection

• Tor router doesn’t need root privileges
– Encourages people to set up their own routers

– More participants = better anonymity for everyone

• Directory servers
– Maintain lists of active onion routers, their locations, 

current public keys, etc.

– Control how new routers join the network
• “Sybil attack”: attacker creates a large number of routers

– Directory servers’ keys ship with Tor code
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Is Tor Perfect?

• Q: What can “go wrong” with the use of Tor?
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Issues and Notes of Caution

• Passive traffic analysis
– Infer from network traffic who is talking to whom
– To hide your traffic, must carry other people’s traffic!

• Active traffic analysis
– Inject packets or put a timing signature on packet flow

• Compromise of network nodes
– Attacker may compromise some routers

• And powerful adversaries may have “too many” routers (e.g., a 
super computer at a national lab)

– It is not obvious which nodes have been compromised
• Attacker may be passively logging traffic

– Better not to trust any individual router
• Assume that some fraction of routers is good, don’t know which
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Issues and Notes of Caution

• Tor isn’t completely effective by itself

– Tracking cookies, fingerprinting, etc.

– Exit nodes can see everything!
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Issues and Notes of Caution

• The simple act of using Tor could make one a 
target for additional surveillance

• Hosting an exit node could result in illegal 
activity coming from your machine
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Mobile Security
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Roadmap
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• History, How we got here

• Mobile malware

• Mobile platforms vs. traditional platforms

• Dive into Android
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Questions: Mobile Malware

Q: How might malware authors get malware 
onto phones? 

Q: What are some goals that mobile device 
malware authors might have?
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Smartphone (In)Security

Users accidentally install malicious applications.

11/28/2018 22



Smartphone (In)Security

Even legitimate applications exhibit questionable behavior.
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Hornyack et al.: 43 of 110 Android 
applications sent location or phone ID to 
third-party advertising/analytics servers.



Mobile Malware Goals

• “Unique” to phones:
– Premium SMS messages 

– Identify location

– Record phone calls

– Log SMS 

• Similar to desktop/PCs: 
– Connects to botmasters

– Steal data

– Phishing 

– Malvertising
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Malware in the Wild

[Zhou et al.]

Android malware grew quickly!
Today: millions of samples.
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Mobile Malware Examples Over 
Time

• DroidDream (Android)

– Over 58 apps uploaded to Google app market

– Conducts data theft; send credentials to attackers 

• Zitmo (Symbian,BlackBerry,Windows,Android)

– Poses as mobile banking application

– Captures info from SMS – steal banking 2nd factors

– Works with Zeus botnet 

• Ikee (iOS) 

– Worm capabilities (targeted default ssh password) 

– Worked only on jailbroken phones with ssh installed
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:

1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) 
trusted.
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Apps can do anything the UID 
they’re running under can do.



What’s Different about Mobile Platforms?

• Isolation: Applications are isolated
– Each runs in a separate execution context

– No default access to file system, devices, etc.

– Different than traditional OSes where multiple 
applications run with the same user permissions!

• App Store: Approval process for applications
– Market: Vendor controlled/Open

– App signing: Vendor-issued/self-signed

– User approval of permissions 
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More Details: Android

• Based on Linux

• Application sandboxes

– Applications run as                                                               
separate UIDs, in                                                                 
separate processes.

– Memory corruption                                                                
errors only lead to                                                                
arbitrary code execution in the context of the particular
application, not complete system compromise!

– (Can still escape sandbox – but must compromise Linux 
kernel to do so.)  allows rooting
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[Enck et al.]



Challenges with Isolated Apps

So mobile platforms isolate applications for 
security, but…

1. Permissions: How can applications access 
sensitive resources?

2. Communication: How can applications 
communicate with each other?

11/28/2018 42



Permission Granting Problem

Smartphones (and other modern OSes) try to prevent 
such attacks by limiting applications’ access to:

– System Resources (clipboard, file system).

– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant 
permissions to applications?
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Two Ways to Ask the User

Prompts (time-of-use)
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Manifests (install-time)



Questions

• Q: What are the pros and cons of the 
manifest-based permission model?

• Q: What are the pros and cons of the “ask 
each use” permission mode?
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Two Ways to Ask the User

Prompts (time-of-use) Manifests (install-time)

Disruptive, which leads to 
prompt-fatigue.
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Two Ways to Ask the User

Prompts (time-of-use) Manifests (install-time)

Out of context; not 
understood by users.

In practice, both are overly permissive: 
Once granted permissions, apps can misuse them.

Disruptive, which leads to 
prompt-fatigue.
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Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.
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Do users understand the warnings?

Are Manifests Usable?

[Felt et al.]
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Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?

[Felt et al.]
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