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Admin

• Lab 2 out Nov 5, due Nov 20, 4:30pm

• Looking ahead:

• HW 3 out ~Nov 19, due ~Nov 30

• Lab 3 out ~Nov 26, due Dec 7 (Quiz Section on Nov 29)

• No class Nov 12 (holiday)

• No class Nov 21; video review assignment instead
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Admin

• Final Project Proposals: Nov 16 – group member names and 
brief description

• Final Project Checkpoint: Nov 30 – preliminary outline and 
references

• Final Project Presentation: Dec 10 – 12-15-minute video –
must be on time

• Explore something of interest to you, that could hopefully 
benefit you or your career in some way – technical topics, 
current events, etc
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Review: Ads That Follow You

Advertisers (and others) track your browsing 
behaviors for the purposes of targeted ads, 
website analytics, and personalized content.
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Review: Tracking Technologies

• HTTP Cookies

• HTTP Auth

• HTTP Etags

• Content cache

• IE userData

• HTML5 protocol and 
content handlers

• HTML5 storage

• Flash cookies

• Silverlight storage

• TLS session ID & resume

• Browsing history

• window.name

• HTTP STS

• DNS cache

• “Zombie” cookies that respawn

(http://samy.pl/evercookie)
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Review: Fingerprinting Web 
Browsers

• User agent

• HTTP ACCEPT headers

• Browser plug-ins

• MIME support

• Clock skew

• Installed fonts

• Cookies enabled?

• Browser add-ons

• Screen resolution

• HTML5 canvas 
(differences in 
graphics SW/HW!)

11/13/2018 6



EFF’s Panopticlick

• https://panopticlick.eff.org/
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History Sniffing

How can a webpage figure out which sites you  
visited previously?

• Color of links
– CSS :visited property

– getComputedStyle()

• Cached Web content timing

• DNS timing
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How Websites Get Your Identity

Personal trackers

Leakage of identifiers
GET http:/​/ad.doubleclick.net/adj/...

Referer: http:/​/submit.SPORTS.com/...?email=jdoe@email.com

Cookie: id=35c192bcfe0000b1...

Security bugs

Third party buys your identity
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Measurement Study (2011)

• Questions:

– How prevalent is tracking (of different types)?

– How much of a user’s browsing history is captured?

– How effective are defenses?

• Approach: Build tool to automatically crawl web, detect 
and categorize trackers based on our taxonomy.

Longitudinal studies since then: tracking has increased and 
become more complex.
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How prevalent is tracking?
524 unique trackers on Alexa top 500 websites (homepages 

+ 4 links)

457 domains (91%) embed at least one tracker.
(97% of those include at least one cross-site tracker.)

50% of domains embed 
between 4 and 5 trackers.

One domain 
includes 
43 trackers.
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Who/what are the top trackers? (2011)
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How has this changed over time?

• The web has existed for a while now…

- What about tracking before 2011? (our first study)

- What about tracking before 2009? (first academic 
study)

• Solution: time travel!
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The Wayback Machine to the Rescue

Time travel for web tracking: http://trackingexcavator.cs.washington.edu
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1996-2016: More & More Tracking
• More trackers of more types
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1996-2016: More & More Tracking
• More trackers of more types, more per site
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1996-2016: More & More Tracking
• More trackers of more types, more per site, more coverage
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ADINT (2017)

• Advertising for Intelligence Gathering

• Adversary can buy ads and use analytics from 
those ads to learn information about targets
– Some ad networks provide location-based ad 

services

• Purchaser of ads can figure out
– What mobile phone applications are in use in 

individual homes

– A target’s movements through the physical world 
(e.g., stores, doctors offices, etc)
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Side Channels
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Side Channel Attacks

• Attacks based on information that can be gleaned 
from the physical implementation of a system, 
rather than breaking its theoretical properties

– Most commonly discussed in the context of 
cryptosystems

– But also prevalent in many contexts
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Examples (on Cryptosystems)

• Timing attacks

• Power analysis

• Good overview: 
http://www.nicolascourtois.com/papers/sc/side
ch_attacks.pdf

If you do something different for secret key bits 1 
vs. 0, attacker can learn something…
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Example Timing Attacks

• RSA: Leverage key-dependent timings of 
modular exponentiations
– https://www.rambus.com/timing-attacks-on-

implementations-of-diffie-hellman-rsa-dss-and-
other-systems/

– http://crypto.stanford.edu/~dabo/papers/ssl-
timing.pdf

• Block Ciphers: Leverage key-dependent 
cache hits/misses
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Power Analysis

• Simple power analysis: Directly read off bits from 
powerline traces

• Differential power analysis: Look for statistical 
differences in power traces, based on guesses of a key bit
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Key Extraction via Electric Potential

Genkin et al. “Get Your Hands Off My Laptop: Physical Side-Channel Key-Extraction 
Attacks On PCs” CHES 2014
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Accelerometer Eavesdropping

Aviv et al. “Practicality of Accelerometer Side Channels on Smartphones” ACSAC 2012
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Gyroscope Eavesdropping
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Michalevsky et al. “Gyrophone: Recognizing Speech 
from Gyroscope Signals” USENIX Security 2014



More Gyroscope

Chen et al. “TouchLogger: Inferring Keystrokes On Touch Screen From Smartphone 
Motion” HotSec 2011
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Keyboard Eavesdropping

Zhuang et al. “Keyboard Acoustic Emanations Revisited” CCS 2005
Vuagnoux et al. “Compromising Electromagnetic Emanations of Wired and Wireless 
Keyboards” USENIX Security 2009
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Compromising Reflections
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Audio from Video

Davis et al. “The Visual Microphone: Passive Recovery of Sound from Video” SIGGRAPH 2014
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Identifying Web Pages: Traffic Analysis

Herrmann et al. “Website Fingerprinting: Attacking Popular Privacy Enhancing 
Technologies with the Multinomial Naïve-Bayes Classifier” CCSW 2009
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Identifying Web Pages: Electrical Outlets

Clark et al. “Current Events: Identifying Webpages by Tapping the Electrical Outlet” ESORICS 2013
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Powerline Eavesdropping
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Spectre

• Exploit speculative execution and cache timing 
information to extract private information from the 
same process
– Example: JavaScript from web page trying to extract 

information from Browser

• Architecture Background:
– Hardware architecture provides “promises” to software

– Those proposes focus on the functional properties of 
the software, not performance properties

– Architectures do a lot to try to increase performance
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Instruction Speculation Tutorial
Many steps (cycles) to execute one instruction; time flows left to right →

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation

add

load

branch

and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store
(memory) go fast!

Mis-speculate: Abort architectural changes (registers, memory); go in other branch 
direction   

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx



Hardware Caching Tutorial
Main Memory (DRAM) 1000x too slow

Add Hardware Cache(s): small, transparent hardware memory

● Like a software cache: speculate near-term reuse (locality) is 
common

● Like a hash table: an item (block or line) can go in one or few 
slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4

--0
--1
--2
--3

12?
Miss

Insert 12

120
--1
--2
--3

07?
Miss

Insert 07

120
--1
--2
073

12?
HIT!
No 

changes

120
--1
--2
073

16?
Miss

Victim 12
Insert 16

160
--1
--2
073

Note 12
victimized 

“early” due 
to “alias”

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx



Spectre (Worksheet)

• Consider this code, running as a kernel system call or as part of a cryptographic 
library. 

if (x < array1_size)
y = array2[array1[x] * 256];

• Suppose:
– That an adversary can run code, in the same process.
– That an adversary can control the value x.
– That an adversary has access to array2.
– That the adversary’s code cannot just read arbitrary memory in the process.
– That there is some secret value, elsewhere in the process, that the adversary would like to 

learn.

• Can you envision a way that an adversary could use their own code, to call a 
vulnerable function with the above code, to learn the secret information? 
Leverage branch prediction and cache structure / timing.
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Spectre: Key Insights

• Train branch predictor to follow one branch of a 
conditional

• After branch predictor trained, make the followed 
branch access information that the code should not
be allowed to access

• That access information will be loaded into the cache

• After the hardware determines that the branch was 
incorrectly executed, the logic of the program will be 
rolled back but the cache will still be impacted

• Time reads to cache, to see which cache lines are 
read more efficiently
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Attacker Steps

• Attacker: Execute code with valid inputs, train branch predictor 
to assume conditional is true

• Attacker: Invoke code with x outside of array1 , array1_size and 
array2 not cached, but value at array1+x cached // Attacker goal: 
read secret memory at address array1+x

• CPU: CPU guesses bounds check is true, speculatively reads from 
array2[array1[x]*256] using malicious x

• CPU: Read from array2 loads data into cache at an address that 
depends on array1[x] using malicious x

• CPU: Change in cache state not reverted when processor realizes 
that speculative execution erroneous

• Attacker: Measure cache timings for array2; read of 
array2[n*256] will be fast for secret byte n (at array1+x)

• Attacker: Repeat for other values of x
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Other Types of Side Channels?

11/13/2018 CSE 484 / CSE M 584 40


