
CSE 484 / CSE M 584: Computer Security and Privacy

Web Tracking (Continued)
Side Channels

Autumn 2018

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Ada Lerner, John Manferdelli, John Mitchell,
Franziska Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:yoshi@cs.Washington.edu

Admin

• Lab 2 out Nov 5, due Nov 20, 4:30pm

• Looking ahead:

• HW 3 out ~Nov 19, due ~Nov 30

• Lab 3 out ~Nov 26, due Dec 7 (Quiz Section on Nov 29)

• No class Nov 12 (holiday)

• No class Nov 21; video review assignment instead

11/13/2018 CSE 484 / CSE M 584 2

Admin

• Final Project Proposals: Nov 16 – group member names and
brief description

• Final Project Checkpoint: Nov 30 – preliminary outline and
references

• Final Project Presentation: Dec 10 – 12-15-minute video –
must be on time

• Explore something of interest to you, that could hopefully
benefit you or your career in some way – technical topics,
current events, etc

11/13/2018 CSE 484 / CSE M 584 3

Review: Ads That Follow You

Advertisers (and others) track your browsing
behaviors for the purposes of targeted ads,
website analytics, and personalized content.

11/13/2018 4

Review: Tracking Technologies

• HTTP Cookies

• HTTP Auth

• HTTP Etags

• Content cache

• IE userData

• HTML5 protocol and
content handlers

• HTML5 storage

• Flash cookies

• Silverlight storage

• TLS session ID & resume

• Browsing history

• window.name

• HTTP STS

• DNS cache

• “Zombie” cookies that respawn

(http://samy.pl/evercookie)

11/13/2018 5

http://samy.pl/evercookie

Review: Fingerprinting Web
Browsers

• User agent

• HTTP ACCEPT headers

• Browser plug-ins

• MIME support

• Clock skew

• Installed fonts

• Cookies enabled?

• Browser add-ons

• Screen resolution

• HTML5 canvas
(differences in
graphics SW/HW!)

11/13/2018 6

EFF’s Panopticlick

• https://panopticlick.eff.org/

11/13/2018 CSE 484 / CSE M 584 7

https://panopticlick.eff.org/

History Sniffing

How can a webpage figure out which sites you
visited previously?

• Color of links
– CSS :visited property

– getComputedStyle()

• Cached Web content timing

• DNS timing

11/13/2018 8

How Websites Get Your Identity

Personal trackers

Leakage of identifiers
GET http:/​/ad.doubleclick.net/adj/...

Referer: http:/​/submit.SPORTS.com/...?email=jdoe@email.com

Cookie: id=35c192bcfe0000b1...

Security bugs

Third party buys your identity

11/13/2018 9

Measurement Study (2011)

• Questions:

– How prevalent is tracking (of different types)?

– How much of a user’s browsing history is captured?

– How effective are defenses?

• Approach: Build tool to automatically crawl web, detect
and categorize trackers based on our taxonomy.

Longitudinal studies since then: tracking has increased and
become more complex.

11/13/2018 10

How prevalent is tracking?
524 unique trackers on Alexa top 500 websites (homepages

+ 4 links)

457 domains (91%) embed at least one tracker.
(97% of those include at least one cross-site tracker.)

50% of domains embed
between 4 and 5 trackers.

One domain
includes
43 trackers.

11/13/2018 11

Who/what are the top trackers? (2011)

11/13/2018 12

How has this changed over time?

• The web has existed for a while now…

- What about tracking before 2011? (our first study)

- What about tracking before 2009? (first academic
study)

• Solution: time travel!

11/13/2018 13

[USENIX Security ’16]

The Wayback Machine to the Rescue

Time travel for web tracking: http://trackingexcavator.cs.washington.edu

11/13/2018 14

http://trackingexcavator.cs.washington.edu/

1996-2016: More & More Tracking
• More trackers of more types

11/13/2018 15

1996-2016: More & More Tracking
• More trackers of more types, more per site

11/13/2018 16

1996-2016: More & More Tracking
• More trackers of more types, more per site, more coverage

11/13/2018 17

ADINT (2017)

• Advertising for Intelligence Gathering

• Adversary can buy ads and use analytics from
those ads to learn information about targets
– Some ad networks provide location-based ad

services

• Purchaser of ads can figure out
– What mobile phone applications are in use in

individual homes

– A target’s movements through the physical world
(e.g., stores, doctors offices, etc)

11/13/2018 CSE 484 / CSE M 584 18

Side Channels

11/13/2018 CSE 484 / CSE M 584 19

Side Channel Attacks

• Attacks based on information that can be gleaned
from the physical implementation of a system,
rather than breaking its theoretical properties

– Most commonly discussed in the context of
cryptosystems

– But also prevalent in many contexts

11/13/2018 20

Examples (on Cryptosystems)

• Timing attacks

• Power analysis

• Good overview:
http://www.nicolascourtois.com/papers/sc/side
ch_attacks.pdf

If you do something different for secret key bits 1
vs. 0, attacker can learn something…

11/13/2018 21

http://www.nicolascourtois.com/papers/sc/sidech_attacks.pdf

Example Timing Attacks

• RSA: Leverage key-dependent timings of
modular exponentiations
– https://www.rambus.com/timing-attacks-on-

implementations-of-diffie-hellman-rsa-dss-and-
other-systems/

– http://crypto.stanford.edu/~dabo/papers/ssl-
timing.pdf

• Block Ciphers: Leverage key-dependent
cache hits/misses

11/13/2018 CSE 484 / CSE M 584 22

https://www.rambus.com/timing-attacks-on-implementations-of-diffie-hellman-rsa-dss-and-other-systems/
http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

Power Analysis

• Simple power analysis: Directly read off bits from
powerline traces

• Differential power analysis: Look for statistical
differences in power traces, based on guesses of a key bit

11/13/2018 Image from https://en.wikipedia.org/wiki/Power_analysis 23

https://en.wikipedia.org/wiki/Power_analysis

Key Extraction via Electric Potential

Genkin et al. “Get Your Hands Off My Laptop: Physical Side-Channel Key-Extraction
Attacks On PCs” CHES 2014

11/13/2018 24

Accelerometer Eavesdropping

Aviv et al. “Practicality of Accelerometer Side Channels on Smartphones” ACSAC 2012

11/13/2018 25

Gyroscope Eavesdropping

11/13/2018 26

Michalevsky et al. “Gyrophone: Recognizing Speech
from Gyroscope Signals” USENIX Security 2014

More Gyroscope

Chen et al. “TouchLogger: Inferring Keystrokes On Touch Screen From Smartphone
Motion” HotSec 2011

11/13/2018 27

Keyboard Eavesdropping

Zhuang et al. “Keyboard Acoustic Emanations Revisited” CCS 2005
Vuagnoux et al. “Compromising Electromagnetic Emanations of Wired and Wireless
Keyboards” USENIX Security 2009

11/13/2018 28

Compromising Reflections

11/13/2018 29

[Backes et al.]

Audio from Video

Davis et al. “The Visual Microphone: Passive Recovery of Sound from Video” SIGGRAPH 2014

11/13/2018 30

Identifying Web Pages: Traffic Analysis

Herrmann et al. “Website Fingerprinting: Attacking Popular Privacy Enhancing
Technologies with the Multinomial Naïve-Bayes Classifier” CCSW 2009

11/13/2018 31

Identifying Web Pages: Electrical Outlets

Clark et al. “Current Events: Identifying Webpages by Tapping the Electrical Outlet” ESORICS 2013

11/13/2018 32

Powerline Eavesdropping

11/13/2018 33

Enev et al.: Televisions, Video Privacy, and Powerline Electromagnetic Interference, CCS 2011

Spectre

• Exploit speculative execution and cache timing
information to extract private information from the
same process
– Example: JavaScript from web page trying to extract

information from Browser

• Architecture Background:
– Hardware architecture provides “promises” to software

– Those proposes focus on the functional properties of
the software, not performance properties

– Architectures do a lot to try to increase performance

11/13/2018 34

Instruction Speculation Tutorial
Many steps (cycles) to execute one instruction; time flows left to right →

add

Predict direction: target or fall thru

Go Faster: Pipelining, branch prediction, & instruction speculation

add

load

branch

and Speculate!

store Speculate more!

load

Speculation correct: Commit architectural changes of and (register) & store
(memory) go fast!

Mis-speculate: Abort architectural changes (registers, memory); go in other branch
direction

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Hardware Caching Tutorial
Main Memory (DRAM) 1000x too slow

Add Hardware Cache(s): small, transparent hardware memory

● Like a software cache: speculate near-term reuse (locality) is
common

● Like a hash table: an item (block or line) can go in one or few
slots

E.g., 4-entry cache w/ slot picked with address (key) modulo 4

--0
--1
--2
--3

12?
Miss

Insert 12

120
--1
--2
--3

07?
Miss

Insert 07

120
--1
--2
073

12?
HIT!
No

changes

120
--1
--2
073

16?
Miss

Victim 12
Insert 16

160
--1
--2
073

Note 12
victimized

“early” due
to “alias”

Material from http://research.cs.wisc.edu/multifacet/papers/hill_mark_wisconsin_meltdown_spectre.pptx

Spectre (Worksheet)

• Consider this code, running as a kernel system call or as part of a cryptographic
library.

if (x < array1_size)
y = array2[array1[x] * 256];

• Suppose:
– That an adversary can run code, in the same process.
– That an adversary can control the value x.
– That an adversary has access to array2.
– That the adversary’s code cannot just read arbitrary memory in the process.
– That there is some secret value, elsewhere in the process, that the adversary would like to

learn.

• Can you envision a way that an adversary could use their own code, to call a
vulnerable function with the above code, to learn the secret information?
Leverage branch prediction and cache structure / timing.

11/13/2018 37

Spectre: Key Insights

• Train branch predictor to follow one branch of a
conditional

• After branch predictor trained, make the followed
branch access information that the code should not
be allowed to access

• That access information will be loaded into the cache

• After the hardware determines that the branch was
incorrectly executed, the logic of the program will be
rolled back but the cache will still be impacted

• Time reads to cache, to see which cache lines are
read more efficiently

11/13/2018 38

Attacker Steps

• Attacker: Execute code with valid inputs, train branch predictor
to assume conditional is true

• Attacker: Invoke code with x outside of array1 , array1_size and
array2 not cached, but value at array1+x cached // Attacker goal:
read secret memory at address array1+x

• CPU: CPU guesses bounds check is true, speculatively reads from
array2[array1[x]*256] using malicious x

• CPU: Read from array2 loads data into cache at an address that
depends on array1[x] using malicious x

• CPU: Change in cache state not reverted when processor realizes
that speculative execution erroneous

• Attacker: Measure cache timings for array2; read of
array2[n*256] will be fast for secret byte n (at array1+x)

• Attacker: Repeat for other values of x

11/13/2018 39

Other Types of Side Channels?

11/13/2018 CSE 484 / CSE M 584 40

