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Admin

• HW2: Due Nov 7, 4:30pm

• Looking ahead, rough plan:

• Lab 2 out ~Nov 5, due ~Nov 19 (Quiz Section on Nov 8)

• HW 3 out ~Nov 19, due ~Nov 30

• Lab 3 out ~Nov 26, due Dec 7 (Quiz Section on Nov 29)
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Admin

• Final Project Proposals: Nov 16 – group member names and 
brief description

• Final Project Checkpoint: Nov 30 – preliminary outline and 
references

• Final Project Presentation: Dec 10 – 12-15-minute video –
must be on time

• Explore something of interest to you, that could hopefully 
benefit you or your career in some way – technical topics, 
current events, etc
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Next Week

• Monday (Nov 5): Lecture on Lab 2

• Monday (Nov 5): No 11:30am office hours for 
me; TA office hours are happening

• Thursday (Nov 8): Quiz Sections -> Extended 
Lab 2 Office Hours
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Cross-Site Request Forgery
(CSRF/XSRF)
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Cookies in Forged Requests
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User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E



Impact

• Hijack any ongoing session (if no protection)

– Netflix: change account settings, Gmail: steal 
contacts, Amazon: one-click purchase

• Reprogram the user’s home router

• Login to the attacker’s account
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Login XSRF: Attacker logs you in as them!
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User logged in 
as attacker

Attacker’s account reflects user’s behavior



Broader View of CSRF

• Abuse of cross-site data export

– SOP does not control data export

– Malicious webpage can initiates requests from 
the user’s browser to an honest server

– Server thinks requests are part of the 
established session between the browser and 
the server (automatically sends cookies)

11/3/2018 10



XSRF Defenses
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• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer: 
http://www.facebook.com/home.php



Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input 
in forms

– Token often based on user’s session ID

– Server must verify correctness of token before 
executing sensitive operations

• Why does this work?

– Same-origin policy: attacker can’t read token out of 
legitimate forms loaded in user’s browser, so can’t 
create fake forms with correct token
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<input type=hidden value=23a3af01b>



Referer Validation
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• Lenient referer checking – header is optional

• Strict referer checking – header is required

Referer: 
http://www.facebook.com/home.php

Referer: 
http://www.evil.com/attack.html

Referer: 





?



Why Not Always Strict Checking?

• Why might the referer header be suppressed?
– Stripped by the organization’s network filter

– Stripped by the local machine

– Stripped by the browser for HTTPS  HTTP transitions

– User preference in browser

– Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF 
defenses today
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Injection
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Injection Attacks

• http://victim.com/copy.php?name=username

• copy.php includes

system(“cp temp.dat $name.dat”)

• User calls

http://victim.com/copy.php?name=“a; rm *”

• copy.php executes

system(“cp temp.dat a; rm *.dat”);
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Basic Issues

• User-supplied data is not validated, filtered, or 
sanitized by application

• User input directly used or concatenated to a string 
that is used by an interpreter

• Common Injections: SQL, NoSQL, Object Relational 
Mapping (ORM), LDAP, Object Graph Navigation 
Library, …
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More Examples

• SQL application uses untrusted data in this SQL call
String query = "SELECT * FROM accounts WHERE 
custID='" + request.getParameter("id") + "'";

• Also, be careful with frameworks, e.g., Hibernate 
Query Language (HQL) call
Query HQLQuery = session.createQuery("FROM 
accounts WHERE custID='" + 
request.getParameter("id") + "'");

• Attacker sets id to ' or '1'='1
http://example.com/app/accountView?id=' or '1'='1

• Result in both cases: return all records in database

11/3/2018 18



Defenses

• Use safe APIs, e.g., prepared statements in SQL with 
parameterized queries
– Define all the SQL code, then pass in each parameter

– Separates code from data

• Whitelist-based server-side input validation

• Escape special characters

• Use LIMIT (and other) SQL controls within queries to 
prevent mass disclosure of records

• Remember Defense in Depth, Least Privilege, etc.
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XML External Entities
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XML External Entities

• Consider a web application that accepts XML input, parses it, and 
outputs the result (or includes untrusted input in XML documents)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY>
<!ENTITY bar "World">

]>
<foo>
Hello &bar;

</foo>

• Parses as 
Hello World
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But What About

• Consider an attacker uploading this XML 
document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

• Attacker attempting to extract information 
from server
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But What About

• Consider an attacker uploading this XML 
document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>
<foo>&xxe;</foo>

• Attacker attempting to probe a private 
network
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But What About

• Consider an attacker uploading this XML 
document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///dev/random" >]>
<foo>&xxe;</foo>

• Attacker attempting a DoS by including a 
potentially never-ending file
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Why Call “Server Side Request 
Forgery?”
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What to Do?

• Use less complex data formats, such as 
JSON

• Disable XML external entities and DTD 
processing in all XML parses

• Whitelist-based server-side input validation

• OWASP very useful source here as well
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Authentication

Another “Ten Most Critical Web Application 
Security Risks”
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Basic Problem
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?

How do you prove to someone that 
you are who you claim to be?

Any system with access control must solve this problem.



Many Ways to Prove Who You Are

• What you know
– Passwords

– Answers to questions that only you know

• Where you are
– IP address, geolocation

• What you are
– Biometrics

• What you have
– Secure tokens, mobile devices
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Passwords and Computer Security

• In 2012, 76% of network intrusions exploited weak or 
stolen credentials (username/password)

– Source: Verizon Data Breach Investigations Report

• First step after any successful intrusion: install   
sniffer or keylogger to steal more passwords

• Second step: run cracking tools on password files

– Cracking needed because modern systems usually do 
not store passwords in the clear (how are they stored?)

• In Mitnick’s “Art of Intrusion” 8 out of 9 exploits 
involve password stealing and/or cracking
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Password Storage

• Recall discussions from crypto section

– Don’t store plaintext passwords

– Don’t use encrypted passwords 

– Use hashed passwords

– Hash a salt along with the password, and store 
the salt and the hashed salt+password on the 
server
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Other Password Security Issues

• Keystroke loggers

– Hardware

– Software (spyware)

• Shoulder surfing

• Same password at multiple sites

• Broken implementations

– TENEX timing attack
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Examples from One Company
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Even More Issues

• Usability

– Hard-to-remember passwords?

– Carry a physical object all the time?

• Denial of service

– Attacker tries to authenticate as you, account 
locked after three failures

• Social engineering
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