
CSE 484 / CSE M 584: Computer Security and 
Privacy

Web Security

Autumn 2018

Tadayoshi (Yoshi) Kohno

yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Ada Lerner, John Manferdelli, John Mitchell, 
Franziska Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

mailto:yoshi@cs.Washington.edu


Admin

• HW2: Due Nov 7, 4:30pm

• Looking ahead, rough plan:

• Lab 2 out ~Nov 5, due ~Nov 19 (Quiz Section on Nov 8)

• HW 3 out ~Nov 19, due ~Nov 30

• Lab 3 out ~Nov 26, due Dec 7 (Quiz Section on Nov 29)

11/3/2018 CSE 484 / CSE M 584 2



Admin

• Final Project Proposals: Nov 16 – group member names and 
brief description

• Final Project Checkpoint: Nov 30 – preliminary outline and 
references

• Final Project Presentation: Dec 10 – 12-15-minute video –
must be on time

• Explore something of interest to you, that could hopefully 
benefit you or your career in some way – technical topics, 
current events, etc

11/3/2018 CSE 484 / CSE M 584 3



Next Week

• Monday (Nov 5): Lecture on Lab 2

• Monday (Nov 5): No 11:30am office hours for 
me; TA office hours are happening

• Thursday (Nov 8): Quiz Sections -> Extended 
Lab 2 Office Hours

11/3/2018 CSE 484 / CSE M 584 - Fall 2017 4



Cross-Site Request Forgery
(CSRF/XSRF)

11/3/2018 5



Cookies in Forged Requests

11/3/2018 6

User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E



Impact

• Hijack any ongoing session (if no protection)

– Netflix: change account settings, Gmail: steal 
contacts, Amazon: one-click purchase

• Reprogram the user’s home router

• Login to the attacker’s account

11/3/2018 7



Login XSRF: Attacker logs you in as them!

11/3/2018 9

User logged in 
as attacker

Attacker’s account reflects user’s behavior



Broader View of CSRF

• Abuse of cross-site data export

– SOP does not control data export

– Malicious webpage can initiates requests from 
the user’s browser to an honest server

– Server thinks requests are part of the 
established session between the browser and 
the server (automatically sends cookies)

11/3/2018 10



XSRF Defenses

11/3/2018 11

• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer: 
http://www.facebook.com/home.php



Add Secret Token to Forms

• “Synchronizer Token Pattern”

• Include a secret challenge token as a hidden input 
in forms

– Token often based on user’s session ID

– Server must verify correctness of token before 
executing sensitive operations

• Why does this work?

– Same-origin policy: attacker can’t read token out of 
legitimate forms loaded in user’s browser, so can’t 
create fake forms with correct token

11/3/2018 12

<input type=hidden value=23a3af01b>



Referer Validation

11/3/2018 13

• Lenient referer checking – header is optional

• Strict referer checking – header is required

Referer: 
http://www.facebook.com/home.php

Referer: 
http://www.evil.com/attack.html

Referer: 





?



Why Not Always Strict Checking?

• Why might the referer header be suppressed?
– Stripped by the organization’s network filter

– Stripped by the local machine

– Stripped by the browser for HTTPS  HTTP transitions

– User preference in browser

– Buggy browser

• Web applications can’t afford to block these users

• Many web application frameworks include CSRF 
defenses today

11/3/2018 14



Injection

11/3/2018 15



Injection Attacks

• http://victim.com/copy.php?name=username

• copy.php includes

system(“cp temp.dat $name.dat”)

• User calls

http://victim.com/copy.php?name=“a; rm *”

• copy.php executes

system(“cp temp.dat a; rm *.dat”);

11/3/2018 16



Basic Issues

• User-supplied data is not validated, filtered, or 
sanitized by application

• User input directly used or concatenated to a string 
that is used by an interpreter

• Common Injections: SQL, NoSQL, Object Relational 
Mapping (ORM), LDAP, Object Graph Navigation 
Library, …

11/3/2018 17



More Examples

• SQL application uses untrusted data in this SQL call
String query = "SELECT * FROM accounts WHERE 
custID='" + request.getParameter("id") + "'";

• Also, be careful with frameworks, e.g., Hibernate 
Query Language (HQL) call
Query HQLQuery = session.createQuery("FROM 
accounts WHERE custID='" + 
request.getParameter("id") + "'");

• Attacker sets id to ' or '1'='1
http://example.com/app/accountView?id=' or '1'='1

• Result in both cases: return all records in database

11/3/2018 18



Defenses

• Use safe APIs, e.g., prepared statements in SQL with 
parameterized queries
– Define all the SQL code, then pass in each parameter

– Separates code from data

• Whitelist-based server-side input validation

• Escape special characters

• Use LIMIT (and other) SQL controls within queries to 
prevent mass disclosure of records

• Remember Defense in Depth, Least Privilege, etc.

11/3/2018 19



XML External Entities

11/3/2018 20



XML External Entities

• Consider a web application that accepts XML input, parses it, and 
outputs the result (or includes untrusted input in XML documents)

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY>
<!ENTITY bar "World">

]>
<foo>
Hello &bar;

</foo>

• Parses as 
Hello World

11/3/2018 21



But What About

• Consider an attacker uploading this XML 
document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

• Attacker attempting to extract information 
from server

11/3/2018 22



But What About

• Consider an attacker uploading this XML 
document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "https://192.168.1.1/private" >]>
<foo>&xxe;</foo>

• Attacker attempting to probe a private 
network

11/3/2018 23



But What About

• Consider an attacker uploading this XML 
document

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///dev/random" >]>
<foo>&xxe;</foo>

• Attacker attempting a DoS by including a 
potentially never-ending file

11/3/2018 24



Why Call “Server Side Request 
Forgery?”

11/3/2018 25



What to Do?

• Use less complex data formats, such as 
JSON

• Disable XML external entities and DTD 
processing in all XML parses

• Whitelist-based server-side input validation

• OWASP very useful source here as well

11/3/2018 26



Authentication

Another “Ten Most Critical Web Application 
Security Risks”

11/3/2018 27



Basic Problem

11/3/2018 28

?

How do you prove to someone that 
you are who you claim to be?

Any system with access control must solve this problem.



Many Ways to Prove Who You Are

• What you know
– Passwords

– Answers to questions that only you know

• Where you are
– IP address, geolocation

• What you are
– Biometrics

• What you have
– Secure tokens, mobile devices

11/3/2018 29



Passwords and Computer Security

• In 2012, 76% of network intrusions exploited weak or 
stolen credentials (username/password)

– Source: Verizon Data Breach Investigations Report

• First step after any successful intrusion: install   
sniffer or keylogger to steal more passwords

• Second step: run cracking tools on password files

– Cracking needed because modern systems usually do 
not store passwords in the clear (how are they stored?)

• In Mitnick’s “Art of Intrusion” 8 out of 9 exploits 
involve password stealing and/or cracking

11/3/2018 30



Password Storage

• Recall discussions from crypto section

– Don’t store plaintext passwords

– Don’t use encrypted passwords 

– Use hashed passwords

– Hash a salt along with the password, and store 
the salt and the hashed salt+password on the 
server

11/3/2018 38



Other Password Security Issues

• Keystroke loggers

– Hardware

– Software (spyware)

• Shoulder surfing

• Same password at multiple sites

• Broken implementations

– TENEX timing attack

11/3/2018 39



Examples from One Company

11/3/2018 CSE 484 / CSE M 584 - Fall 2017 40



Even More Issues

• Usability

– Hard-to-remember passwords?

– Carry a physical object all the time?

• Denial of service

– Attacker tries to authenticate as you, account 
locked after three failures

• Social engineering

11/3/2018 41


