CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography

Autumn 2018

Tadayoshi (Yoshi) Kohno
yoshi@cs.Washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Ada Lerner, John Manferdelli, John Mitchell, Franziska Roesner, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials...
Admin

• Lab 1:
 – Due Oct 24, 4:30pm (Today!)

• TA Office Hours (especially for Lab 1): M 2:30, W 1:30, F 12

• My office hours (especially for crypto, research readings, administrivia, worksheet pick up): M 11:30
Alice and Bob are both cryptographers, and they are talking on the phone. They want to randomly flip a coin. If they were together, in person, they would flip a real coin and see if it was Heads or Tails. But they are not together, in person, and they don’t trust each other enough to have one of them flip a coin and tell the other person the answer.

Using the techniques we’ve discussed so far in class, how can Alice and Bob effectively flip a random coin together, over the phone, such that they both trust the answer even though they don’t trust each other?
Pick bit b_A at random

$C_1 = $ Locked box with b_A

Pick bit b_B at random

$C_2 = $ Locked box with b_B

Info to open first box C_1

Now knows b_A

Info to open second box C_2

Now knows b_B

Both compute random bit at $b_A \oplus b_B$
Pick bit b_A at random
Pick RA as long random string

$C_1 = H(b_A || RA)$

Send $b_A || RA$
Verify that H has of message equals C_1

Pick bit b_B at random
Pick RB as long random string

$C_2 = H(b_B || RB)$

Send $b_B || RB$
Verify that H has of message equals C_2

Both compute random bit at b_A xor b_B
Stepping Back:
Flavors of Cryptography

• Symmetric cryptography
 – Both communicating parties have access to a shared random string K, called the key.

• Asymmetric cryptography
 – Each party creates a public key pk and a secret key sk.
Symmetric Setting

Both communicating parties have access to a shared random string K, called the key.
Asymmetric Setting

Each party creates a public key pk and a secret key sk.

Alice

pk_A, sk_A

pk_B, sk_A

Encapsulate

Decapsulate

Bob

pk_A

pk_B, sk_B

Adversary
Flavors of Cryptography

• Symmetric cryptography
 – Both communicating parties have access to a shared random string K, called the key.
 – Challenge: How do you privately share a key?

• Asymmetric cryptography
 – Each party creates a public key pk and a secret key sk.
 – Challenge: How do you validate a public key?
Public Key Crypto: Basic Problem

Given: Everybody knows Bob’s **public key**
 Only Bob knows the corresponding **private key**

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself
Applications of Public Key Crypto

• Session key establishment
 – Exchange messages to create a secret session key
 – Then switch to symmetric cryptography (why?)

• Encryption for confidentiality
 – Anyone can encrypt a message
 • With symmetric crypto, must know secret key to encrypt
 – Only someone who knows private key can decrypt
 – Key management is simpler (or at least different)
 • Secret is stored only at one site: good for open environments

• Digital signatures for authentication
 – Can “sign” a message with your private key
Session Key Establishment
Modular Arithmetic

- **Given g and prime p, compute:**
 \(g^1 \mod p, \ g^2 \mod p, \ldots \ g^{100} \mod p \)

 - For \(p=11, \ g=10 \)
 - \(10^1 \mod 11 = 10, \ 10^2 \mod 11 = 1, \ 10^3 \mod 11 = 10, \ldots \)
 - Produces cyclic group \{10, 1\} (order=2)

 - For \(p=11, \ g=7 \)
 - \(7^1 \mod 11 = 7, \ 7^2 \mod 11 = 5, \ 7^3 \mod 11 = 2, \ldots \)
 - Produces cyclic group \{7,5,2,3,10,4,6,9,8,1\} (order = 10)
 - \(g=7 \) is a “generator” of \(\mathbb{Z}_{11}^* \)

 - For \(p=11, \ g=3 \)
 - \(3^1 \mod 11 = 3, \ 3^2 \mod 11 = 9, \ 3^3 \mod 11 = 5, \ldots \)
 - Produces cyclic group \{3,9,5,4,1\} (order = 5)
Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- Public info: p and g
 - p is a large prime, g is a **generator** of \mathbb{Z}_p^*
 - $\mathbb{Z}_p^* = \{1, 2 \ldots p-1\}$; for all a in \mathbb{Z}_p^* there exists i s.t. $a = g^i \mod p$
 - **Modular arithmetic**: numbers “wrap around” after they reach p

Pick secret, random X

Alice

$g^x \mod p$

Pick secret, random Y

Bob

$g^y \mod p$

Compute $k = (g^y \mod p)^x = g^{xy} \mod p$

Compute $k = (g^x \mod p)^y = g^{xy} \mod p$
Why is Diffie-Hellman Secure?

- **Discrete Logarithm (DL) problem:**
 - Given $g^x \mod p$, it’s hard to extract x
 - There is no known efficient algorithm for doing this
 - This is not enough for Diffie-Hellman to be secure!

- **Computational Diffie-Hellman (CDH) problem:**
 - Given $g^x \mod p$ and $g^y \mod p$, it’s hard to compute $g^{xy} \mod p$
 - ... unless you know x or y, in which case it’s easy

- **Decisional Diffie-Hellman (DDH) problem:**
 - Given $g^x \mod p$ and $g^y \mod p$, it’s hard to tell the difference between $g^{xy} \mod p$ and $g^r \mod p$ where r is random
Properties of Diffie-Hellman

• Assuming DDH problem is hard (depends on choice of parameters!), Diffie-Hellman protocol is a secure key establishment protocol against passive attackers
 – Common recommendation:
 • Choose p=2q+1, where q is also a large prime
 • Choose g that generates a subgroup of order q in \mathbb{Z}_p^*
 – Eavesdropper can’t tell the difference between the established key and a random value
 – Often hash $g^{xy} \mod p$, and use the hash as the key
 – Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide authentication
 – Party in the middle attack (often called “man in the middle attack”)

10/24/2018
CSE 484 / CSE M 584
17
More on Diffie-Hellman Key Exchange

• Important Note: We have discussed discrete logs modulo integers.
• Significant advantages in using elliptic curve groups – groups with some similar mathematical properties (i.e., are “groups”) but have better security and performance (size) properties.
Public Key Encryption
Requirements for Public Key Encryption

• **Key generation:** computationally easy to generate a pair (public key PK, private key SK)

• **Encryption:** given plaintext M and public key PK, easy to compute ciphertext $C=E_{PK}(M)$

• **Decryption:** given ciphertext $C=E_{PK}(M)$ and private key SK, easy to compute plaintext M

 – Infeasible to learn anything about M from C without SK

 – **Trapdoor function:** $\text{Decrypt}(SK,\text{Encrypt}(PK,M))=M$