Course Staff

• Instructor:
 – Tadayoshi Kohno (Yoshi)

• TAs:
 – Ivan Evtimov, Amanda Lam, Yang Wang, Jack Xu, Kyle Yan, Jeff Zhao

• How to reach us: cse484-tas@cs.washington.edu
Quiz Sections and Office Hours

• Quiz sections:
 – Thursday, 1:30-2:20pm, BAG 260
 – Thursday, 2:30-3:20pm, WFS 201
 – Thursday, 3:30-4:20pm, WFS 201

• Office hours
 – Yoshi: Mondays 10:30-11:20, CSE 558
 – TAs:
 • Monday, 2:30-3:30pm, CSE 4th floor breakout
 • Wednesday, 1:30-2:30pm, CSE 2nd floor breakout
 • Friday, 12-1pm, CSE 4th floor breakout
Prerequisites (CSE 484)

• Required: Data Abstractions (CSE 332)
• Required: Hardware/Software Interface (CSE 351)
• Assume: Working knowledge of C and assembly
 – One of the labs will involve writing buffer overflow attacks in C
 – You must have detailed understanding of x86 architecture, stack layout, calling conventions, etc.
• Assume: Working knowledge of software engineering tools for Unix environments (gdb, etc)
• Assume: Working knowledge of Java and JavaScript
• Assume: Ability to learn new programming languages easily
Prerequisites (CSE 484)

• Recommended: Computer Networks; Operating Systems
 – Will help provide deeper understanding of security mechanisms and where they fit in the big picture

• Recommended: Complexity Theory; Discrete Math; Algorithms
 – Will help with the more theoretical aspects of this course.
Prerequisites (CSE 484)

• Most of all: Eagerness to learn!
 – This is a 400 level course.
 – We expect you to push yourself to learn as much as possible.
 – We expect you to be a strong, independent learner capable of learning new concepts from the lectures, the readings, and on your own.
Course Logistics (CSE 484)

- Lectures: MWF: 10:30-11:20pm
 Sections: Thurs: 1:30-2:20pm, 2:30-3:20pm, 3:30-4:20pm
- Security is a contact sport!
- Labs (45% of the grade)
 - Hands-on experience with security issues
 - Can generally be done in teams of 3 students
 (see specific lab descriptions for details)
- Homework (25% of grade)
- Participation and in-class activities (10% of the grade)
- Final project (20% of the grade)
Course Logistics (CSE M 584)

- Same as before, but...
- Labs (42% of the grade) [-3%]
- Homework (22% of grade) [-3%]
- Research readings (10%) [+10%]
- Participation and in-class activities (10%)
- Final (16% of the grade) [-4%]
Labs

• General plan:
 – 2 or 3 labs
 • First lab out soon, likely next week
 – Submit to Canvas system (URL will be on website)
 – Groups of up to three generally allowed (check each project page for details)
Labs

• First lab: Software security
 – Buffer overflow attacks, double-free exploits, format string exploits, ...

• Second lab: Web security
 – XSS attacks, SQL injection, ...

• Likely third lab: Smart homes, threat modeling, and other emerging issues in computer security
Homework

• 2 or 3 homeworks distributed across the quarter (tentative dates on website)
 – First homework out now (due Oct 5)

• Do soon: sign ethics form!
Final Project

• No midterm or final exam!
• Instead: **12-15 min video** about a security/privacy topic of your choice
 – Groups of up to 3 people
 – Security is a broad field, and this class can’t remotely cover everything – **this is your chance to explore a security or privacy topic in more detail!**
 – Multiple checkpoint deadlines throughout quarter

• Details:
Participation

• In-class activities (like the one from today 😊)
 – You’ll have 5 free in-class days (for travel etc.)

• Contributions to class forums
 – Don’t be silent for 9 weeks and then make 10 posts on the last day of the quarter

• In class: Class too large to make this fair, but you are still encouraged to speak up in class, ask questions, etc

• Discussion section: More opportunities for discussion
Ethics

• To learn to defend systems, you will learn to attack them. You must use this knowledge ethically.

• In order to get a non-zero grade in this course, you must electronically sign the “Security and Privacy Code of Ethics” form by 11:59pm on Wed, Oct 3.
Late Submission Policy

• 3 free late days, no questions asked
 – Cumulative, throughout the quarter
 – Use however you wish (all at once, 3x1, ...)

• After that, late assignments will be dropped 20% per calendar day.
 – Late days will be rounded up
 – So an assignment turned in 26 hours late will be downgraded 40% if no late days are used
 – See website for exceptions -- some assignments must be turned in on time
Course Materials

• Textbook:
 – Textbook is by now old, but still conveys a way to look at the world
 – Additional materials linked to from course website

• Attend lectures
 – Lectures will not follow the textbook and will cover a significant amount of material that is not in the textbook
 – Lectures will focus on “big-picture” principles and ideas

• Attend sections
 – Details not covered in lecture, especially about homeworks and labs
 – More opportunity for discussion
Other Helpful Books (Online)

 - Focuses on design principles for secure systems
 - Wide range of entertaining examples: banking, nuclear command and control, burglar alarms
- Menezes, van Oorschot, and Vanstone, “Handbook of Applied Cryptography”
- Many many other useful books exist, not all online
Other Books, Movies, ...

• Pleasure books include:
 – Little Brother by Cory Doctorow
 • Available online here http://craphound.com/littlebrother/download/
 – Cryptonomicon and REAMDE by Neal Stephenson
 – The Art of Intrusion and The Art of Deception by Kevin Mitnick
 – Countdown to Zero Day by Kim Zetter
 – Many more -- please feel free to post your favorites on the Google Group!

• Movies include:
 – Hackers
 – Sneakers
 – War Games
 – Many more -- please feel free to post your favorites on the Google Group!

• Historical texts include:
 – The Codebreakers by David Kahn
 – The Code Book by Simon Singh
Guest Lectures

• We will have a few guest lectures throughout the quarter
 – Useful to give you a different perspective: research, industry, government, legal
 – Some already scheduled, others TBD
Mailing List for Announcements

multi_cse484a_au18@uw.edu

• Make sure you’re on the mailing list
 – We’ll send a test mail after class; everyone enrolled should receive it
• URL for mailing list on course website
• We will use the mailing list for announcements; please use the Google Group for discussions
Google Group

• We will set up a Google Group for this course, to discuss assignments

• Please use it to discuss the homework assignments and labs and other general class materials

• You can also use it to exercise the “security mindset”
 – Discussions of how movies get security right or wrong
 – Discussions of news articles about security (or not about security, but that miss important security-related things)
 – Discussions about security flaws you observe in the real world
 – ...

9/26/2018
What Does “Security” Mean to You?

• See worksheet, Q1 + Q2
• (Feel free to answer Q4 + Q5 now too)
How Systems Fail

Systems may fail for many reasons, including:

- **Reliability** deals with accidental failures
- **Usability** deals with problems arising from operating mistakes made by users
- **Security** deals with intentional failures created by intelligent parties
 - Security is about computing in the presence of an adversary
 - But security, reliability, and usability are all related
Challenges: What is “Security”?

• What does security mean?
 – Often the hardest part of building a secure system is figuring out what security means
 – What are the assets to protect?
 – What are the threats to those assets?
 – Who are the adversaries, and what are their resources?
 – What is the security policy or goals?

• Perfect security does not exist!
 – Security is not a binary property
 – Security is about risk management
Two Key Themes of this Course

1. How to think about security
 – The “Security Mindset” – a “new” way to think about systems

2. Technical aspects of security
 – Vulnerabilities and attack techniques
 – Defensive technologies
 – Topics including: software security, cryptography, malware, web security, web privacy, smartphone security, authentication, usable security, anonymity, physical security, security for emerging technologies
What This Course is Not About

• **Not** a comprehensive course on computer security
 – Computer security is a broad discipline!
 – Impossible to cover everything in one quarter
 – So be careful in industry or wherever you go!
• **Not** about all of the latest and greatest attacks
 – Read news, discuss on Google Group
• **Not** a course on ethical, legal, or economic issues
 – We will touch on these issues, but the topic is huge
• **Not** a course on how to “hack” or “crack” systems
 – Yes, we will learn about attacks ... but the ultimate goal is to develop an understanding of attacks so that you can build more secure systems
Theme 1: Security Mindset

• Thinking critically about designs, challenging assumptions
• Being curious, thinking like an attacker
• “That new product X sounds awesome, I can’t wait to use it!” versus “That new product X sounds cool, but I wonder what would happen if someone did Y with it…”

• Why it’s important
 – Technology changes, so learning to think like a security person is more important than learning specifics of today
 – Will help you design better systems/solutions
 – Interactions with broader context: law, policy, ethics, etc.
Example
Example – What Do You See?
Example – What Do You See?
Learning the Security Mindset

• Several approaches for developing “The Security Mindset” and for exploring the broader contextual issues surrounding computer security
 – Homework #1
 • Current event reflections and security reviews
 • May work in groups of up to 3 people (groups are encouraged – lots of value in discussing security with others!)
 – In class discussions and activities
 – Participation in Google Group (e.g., critiquing movies)
Security: Not Just for PCs

- smartphones
- voting machines
- EEG headsets
- medical devices
- wearables
- RFID
- mobile sensing platforms
- game platforms
- cars
- airplanes