
CSE 484 / CSE M 584: Computer Security and Privacy

Software Security (finish)

Spring 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Annoucements

• If you haven’t gotten access to lab 1, please
do so ASAP!
– Checkpoint due Friday (4/14)!

• Coming up
– Today: finish software security
– Wednesday: start cryptography

4/9/17 CSE 484 / CSE M 584 - Spring 2017 2

Beyond Buffer Overflows…

4/9/17 CSE 484 / CSE M 584 - Spring 2017 3

Another Type of Vulnerability

• Consider this code:

• Goal: Open only regular files (not symlink, etc)
• What can go wrong?

4/9/17 CSE 484 / CSE M 584 - Spring 2017 4

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

TOCTOU (Race Condition)

• TOCTOU == Time of Check to Time of Use:

• Goal: Open only regular files (not symlink, etc)
• Attacker can change meaning of path between stat

and open (and access files he or she shouldn’t)
4/9/17 CSE 484 / CSE M 584 - Spring 2017 5

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

Another Type of Vulnerability

• Consider this code:

4/9/17 CSE 484 / CSE M 584 - Spring 2017 6

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

Integer Overflow and Implicit Cast

• Consider this code:

4/9/17 CSE 484 / CSE M 584 - Spring 2017 7

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may
copy huge amounts

of input into buf.

Another Example

4/9/17 CSE 484 / CSE M 584 - Spring 2017 8

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

4/9/17 CSE 484 / CSE M 584 - Spring 2017 9

• What if len is large (e.g., len = 0xFFFFFFFF)?
• Then len + 5 = 4 (on many platforms)
• Result: Allocate a 4-byte buffer, then read a lot of

data into that buffer.

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd
• Return FALSE otherwise

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

4/9/17 CSE 484 / CSE M 584 - Spring 2017 10

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
– Total tries: 256*8 = 2048

4/9/17 CSE 484 / CSE M 584 - Spring 2017 11

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE

Timing Attacks

• Assume there are no “typical” bugs in the software
– No buffer overflow bugs
– No format string vulnerabilities
– Good choice of randomness
– Good design

• The software may still be vulnerable to timing
attacks
– Software exhibits input-dependent timings

• Complex and hard to fully protect against

4/9/17 CSE 484 / CSE M 584 - Spring 2017 12

Other Examples

• Plenty of other examples of timings attacks
– AES cache misses

• AES is the “Advanced Encryption Standard”
• It is used in SSH, SSL, IPsec, PGP, ...

– RSA exponentiation time
• RSA is a famous public-key encryption scheme
• It’s also used in many cryptographic protocols and

products

4/9/17 CSE 484 / CSE M 584 - Spring 2017 13

Randomness Issues

• Many applications (especially security ones)
require randomness

• Explicit uses:
– Generate secret cryptographic keys
– Generate random initialization vectors for encryption

• Other “non-obvious” uses:
– Generate passwords for new users
– Shuffle the order of votes (in an electronic voting

machine)
– Shuffle cards (for an online gambling site)

4/9/17 CSE 484 / CSE M 584 - Spring 2017 14

C’s rand() Function

• C has a built-in random function: rand()
unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;

}
/* srand: set seed for rand() */
void srand(unsigned int seed) {

next = seed;
}

• Problem: don’t use rand() for security-critical applications!
– Given a few sample outputs, you can predict subsequent ones

4/9/17 CSE 484 / CSE M 584 - Spring 2017 15

Problems in Practice

• One institution used (something like) rand() to
generate passwords for new users
– Given your password, you could predict the passwords

of other users
• Kerberos (1988 - 1996)

– Random number generator improperly seeded
– Possible to trivially break into machines that rely upon

Kerberos for authentication
• Online gambling websites

– Random numbers to shuffle cards
– Real money at stake
– But what if poor choice of random numbers?

4/9/17 CSE 484 / CSE M 584 - Spring 2017 16

4/9/17 CSE 484 / CSE M 584 - Spring 2017 17

4/9/17 CSE 484 / CSE M 584 - Spring 2017 18

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

4/9/17 CSE 484 / CSE M 584 - Spring 2017 19

PS3 and Randomness

• 2010/2011: Hackers found/released private root key for Sony’s PS3
• Key used to sign software – now can load any software on PS3

and it will execute as “trusted”
• Due to bad random number: same “random” value used to sign

all system updates

4/9/17 CSE 484 / CSE M 584 - Spring 2017 20

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

Other Problems

• Key generation
– Ubuntu removed the randomness from SSL, creating

vulnerable keys for thousands of users/servers
– Undetected for 2 years (2006-2008)

• Live CDs, diskless clients
– May boot up in same state every time

• Virtual Machines
– Save state: Opportunity for attacker to inspect the

pseudorandom number generator’s state
– Restart: May use same “psuedorandom” value more

than once

4/9/17 CSE 484 / CSE M 584 - Spring 2017 21

4/9/17 CSE 484 / CSE M 584 - Spring 2017 22

https://xkcd.com/221/

Obtaining Pseudorandom Numbers

• For security applications, want “cryptographically
secure pseudorandom numbers”

• Libraries include cryptographically secure
pseudorandom number generators

• Linux:
– /dev/random
– /dev/urandom - nonblocking, possibly less entropy

• Internally:
– Entropy pool gathered from multiple sources

4/9/17 CSE 484 / CSE M 584 - Spring 2017 23

Where do (good) random
numbers come from?

• Humans: keyboard, mouse input
• Timing: interrupt firing, arrival of packets on

the network interface
• Physical processes: unpredictable physical

phenomena

4/9/17 CSE 484 / CSE M 584 - Spring 2017 24

Software Security:
So what do we do?

4/9/17 CSE 484 / CSE M 584 - Spring 2017 25

Fuzz Testing

• Generate “random” inputs to program
– Sometimes conforming to input structures (file

formats, etc.)
• See if program crashes
– If crashes, found a bug
– Bug may be exploitable

• Surprisingly effective

• Now standard part of development lifecycle

4/9/17 CSE 484 / CSE M 584 - Spring 2017 26

General Principles

• Check inputs

4/9/17 CSE 484 / CSE M 584 - Spring 2017 27

Shellshock

• Check inputs: not just to prevent buffer overflows
• Example: Shellshock (September 2014)

– Vulnerable servers processed input from web requests
– Passed (user-provided) environment variables (like user

agent, cookies…) to CGI scripts
– Maliciously crafted environment variables exploited a

bug in bash to execute arbitrary code

env x='() { :;}; echo OOPS' bash -c :

4/9/17 CSE 484 / CSE M 584 - Spring 2017 28

General Principles

• Check inputs
• Check all return values
• Least privilege
• Securely clear memory (passwords, keys, etc.)
• Failsafe defaults
• Defense in depth

– Also: prevent, detect, respond

• NOT: security through obscurity

4/9/17 CSE 484 / CSE M 584 - Spring 2017 29

General Principles

• Reduce size of trusted computing base (TCB)
• Simplicity, modularity

– But: Be careful at interface boundaries!

• Minimize attack surface
• Use vetted component
• Security by design

– But: tension between security and other goals

• Open design? Open source? Closed source?
– Different perspectives

4/9/17 CSE 484 / CSE M 584 - Spring 2017 30

Does Open Source Help?

• Different perspectives…

• Happy example:
– Linux kernel backdoor attempt thwarted (2003)

(http://www.freedom-to-tinker.com/?p=472)

• Sad example:
– Heartbleed (2014)

• Vulnerability in OpenSSL that allowed
attackers to read arbitrary memory from
vulnerable servers (including private keys)

4/9/17 CSE 484 / CSE M 584 - Spring 2017 31

http://xkcd.com/1354/

4/9/17 CSE 484 / CSE M 584 - Spring 2017 32

http://xkcd.com/1354/

4/9/17 CSE 484 / CSE M 584 - Spring 2017 33

http://xkcd.com/1354/

4/9/17 CSE 484 / CSE M 584 - Spring 2017 34

Vulnerability Analysis and Disclosure

• What do you do if you’ve found a security
problem in a real system?

• Say
– A commercial website?
– UW grade database?
– Boeing 787?
– TSA procedures?

4/9/17 CSE 484 / CSE M 584 - Spring 2017 35

Abj sbe fbzr pelcgbtencul!

Now for some cryptography!

Cryptography and Security

• Art and science of protecting our information.
– Keeping it private, if we want privacy.
– Protecting its integrity, if we want to avoid

forgeries.

4/9/17 CSE 484 / CSE M 584 - Spring 2017 37

Images from Wikipedia and Barnes & Noble

Some Thoughts About Cryptography

• Cryptography only one small piece of a larger system
• Must protect entire system

– Physical security
– Operating system security
– Network security
– Users
– Cryptography (following slides)

• “Security only as strong as the weakest link”
– Need to secure weak links
– But not always clear what the weakest link is (different adversaries and

resources, different adversarial goals)
– Crypto failures may not be (immediately) detected

• Cryptography helps after you’ve identified your threat model and goals
– Famous quote: “Those who think that cryptography can solve their problems

doesn’t understand cryptography and doesn’t understand their problems.”

4/9/17 CSE 484 / CSE M 584 - Spring 2017 38

Improved Security, Increased Risk

• RFIDs in car keys:
– RFIDs in car keys make it harder to hotwire a car
– Result: Car jackings increased

4/9/17 CSE 484 / CSE M 584 - Spring 2017 39

Improved Security, Increased Risk

• RFIDs in car keys:
– RFIDs in car keys make it harder to hotwire a car
– Result: Car jackings increased

4/9/17 CSE 484 / CSE M 584 - Spring 2017 40

XKCD: http://xkcd.com/538/

4/9/17 CSE 484 / CSE M 584 - Spring 2017 41

