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Looking Forward

* Today: more on software security
* Friday: guest lecture by Karl Koscher
* Next week: finish software security, start crypto

* Reading #1 due Thursday (584M only)

* Homework #1 due Friday

* Lab #1 out!
— Submit your group + public key to the form sent out via email
— Instructions for creating a key are in the lab description

e Section this week: Lab 1
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Buffer Overflow: Causes and Cures

* Typical memory exploit involves code injection

— Put malicious code at a predictable location in memory,
usually masquerading as data

— Trick vulnerable program into passing control to it

 Possible defenses:
1. Prevent execution of untrusted code
Stack “canaries”

Encrypt pointers
Address space layout randomization

oW
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W-xor-X /| DEP

* Mark all writeable memory locations as non-
executable

— Example: Microsoft’s Data Execution Prevention (DEP)
— This blocks (almost) all code injection exploits

* Hardware support
— AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
— Makes memory page non-executable

* Widely deployed -
— Windows (since XP SP2), ” - F—

Linux (via PaX patches), B
OS X (since 10.5)

Data Execution Prevention helps protect against damage from viruses and other
securi tvth ats. M
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What Does W-xor-X Not Prevent?

* Can still corrupt stack...
— ... or function pointers or critical data on the heap

* As long as “saved EIP” points into existing code,
W-xor-X protection will not block control transfer

* This is the basis of return-to-libc exploits

— Overwrite saved EIP with address of any library routine,
arrange stack to look like arguments

* Does not look like a huge threat
— Attacker cannot execute arbitrary code
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return-to-libc on Steroids

* Overwritten saved EIP need not point to the
beginning of a library routine

* Any existing instruction in the code image is fine
— Will execute the sequence starting from this instruction

* What if instruction sequence contains RET?
— Execution will be transferred... to where?

— Read the word pointed to by stack pointer (ESP)
e Guess what? Its value is under attacker’s control!

— Use it as the new value for EIP
e Now controlis transferred to an address of attacker’s choice!

— Increment ESP to point to the next word on the stack
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Chaining RETs for Fun and Profit

* Can chain together sequences ending in RET

— Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

* What is this good for?

* Answer [Shacham et al.]: everything
— Turing-complete language

— Build “gadgets” for load-store, arithmetic, logic, control
flow, system calls

— Attack can perform arbitrary computation using no
injected code at all — return-oriented programming
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Return-Oriented Programming
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Run-Time Checking: StackGuard

« Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

/\
- ¢ P w— = . .
re ~ Frame of the op O
buf sf . ! p
B <z uncton stack
N ~~ _J [ § v FE Y ,
Local variables Pointer to Return

previous execution to
frame this address
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Run-Time Checking: StackGuard

« Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

Y

ret | Frameofthe Top of
buf sf . ! p
P addr v:ca”::ng fzuncv:ttonv: stack
N~ ~" -’ \ v J \ Y J)
Local variables Pointerto ~ Return

previous execution to
frame this address

* Choose random canary string on program start
— Attacker can’t guess what the value of canary will be

« Terminator canary: “\o~, newline, linefeed, EOF
— String functions like strcpy won’ t copy beyond “\o”
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StackGuard Implementation

* StackGuard requires code recompilation

* Checking canary integrity prior to every function
return causes a performance penalty
— For example, 8% for Apache Web server

e StackGuard can be defeated

— A single memory write where the attacker controls both
the value and the destination is sufficient
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Defeating StackGuard

* Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf

— Example: dst is a local pointer variable

H_I
Return execution to
this address
BadPointer, attack code &RET
A A~

=

Overwrite destination of strcpy with RET positiyﬁ

/ strcpy will copy
BadPointer here

4/3/17
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PointGuard

* Attack: overflow a function pointer so that it points
to attack code

* ldea: encrypt all pointers while in memory
— Generate a random key when program is executed

— Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory

* Pointers cannot be overflowed while in registers

* Attacker cannot predict the target program’s key

— Even if pointer is overwritten, after XORing with key it
will dereference to a “random’” memory address
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[Cowan]

Normal Pointer Dereference

Memory

Memory

4/3/17

1. Fetch pointer value

CPU

2. Access data referenced by pointer

<
Pointer b
0X1234 ata
0X1234

1. Fetch pointer value

U

2. Access attack code referenced
by corrupted pointer

Corruptied pointer
~~9x1@_4p_ " Data Attack
— code
0X1340
0Xx1234 0X1340
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[Cowan]

PointGuard Dereference

CPU

1. Fetch pointer 5 AQM 2. Access data referenced by pointer
value ecrypt
P}
Encryptgd pointer
Memory 07230 Data
0X1234
Decrypts to C P U
EIEBITNELE 2. Access random address;

0x9786 segmentation fault and crash

1. Fetch pointer
value Decrypt
Corrupted pointer Attack T
Memory resel pata code
0X1340
0x1234 0x1340 0x9786
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PointGuard Issues

* Must be very fast
— Pointer dereferences are very common
* Compilerissues

— Must encrypt and decrypt only pointers

— If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

Attacker should not be able to modify the key
— Store key in its own non-writable memory page

* PG’d code doesn’t mix well with normal code
— What if PG’d code needs to pass a pointer to OS kernel?
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ASLR: Address Space Randomization

* Map shared libraries to a random location in
process memory

— Attacker does not know addresses of executable code
* Deployment (examples)

— Windows Vista: 8 bits of randomness for DLLs

— Linux (via PaX): 16 bits of randomness for libraries

— Even Android

— More effective on 64-bit architectures
* Other randomization methods

— Randomize system call ids or instruction set
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Example: ASLR in Vista

* Booting Vista twice loads libraries into
different locations:

4/3/17

ntlanman.dll O0x6D7F0000 | Microsoft® Lan Manager
ntmarta.dll 0x/5370000 | Windows NT MARTA provider
ntshrui. dll Ox6F2C0000 | Shell extensions for sharing
ole32.dll 0x76160000 | Microsoft OLE for Windows
htlanman. dll Ox6DAI0000 | Microsoft® Lan Manager
ntmarta.dll Ox75660000 | Windows NT MARTA provider
htshrul.dll 0x6D3D0000 | Shell extensions for sharing
ole32.dll 0x763C0000 | Microsoft OLE for Windows
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ASLR Issues

* NOP slides and heap spraying to increase
likelihood for custom code (e.g. on heap)

* Brute force attacks or memory disclosures
to map out memory on the fly

— Disclosing a single address can reveal the
location of all code within a library
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Other Possible Solutions

* Use safe programming languages, e.g., Java
— What about legacy C code?
— (Though Java doesn’t magically fix all security issues ©)

 Static analysis of source code to find overflows
* Dynamic testing: “fuzzing”

* LibSafe: dynamically loaded library that intercepts
calls to unsafe C functions and checks that there’s
enough space before doing copies

— Also doesn’t prevent everything
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Beyond Buffer Overflows...
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Another Type of Vulnerability

e Consider this code:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error('only allowed to regular files!");
return -1;

}
return open(path, O RDONLY);

}

* Goal: Open only regular files (not symlink, etc)
* What can go wrong?



TOCTOU (Race Condition)

e TOCTOU ==Time of Check to Time of Use:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error('only allowed to regular files!");

return -1;

}
return open(path, O RDONLY);

}
* Goal: Open only regular files (not symlink, etc)

* Attacker can change meaning of path between stat
and open (and access files he or she shouldn’t)



Another Type of Vulnerability

 Consider this code:

char buf[80];
volid vulnerable() {

}

int len = read int from network();

char *p = read string from network();

if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;



Integer Overflow and Implicit Cast

» Consider this code: If len is negative, may
copy huge amounts

o S B0 7 of input into buf.

volid vulnerable() {

int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;
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Another Example

size t len = read_int from network();

char *buf;
buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
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Integer Overflow and Implicit Cast

size t len = read_int from network();

char *buf;
buf = malloc(len+5);

read(fd, buf, len);

* What if lenis large (e.g., len = oXFFFFFFFF)?

* Thenlen + 5 =4 (on many platforms)
* Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)




Password Checker

* Functional requirements

— PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
e Return FALSE otherwise

— RealPwd and CandidatePwd are both 8 characters long
* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

* (learly meets functional description
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Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Try all 2568 =
possibilities
* Better: how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, second, third, ....

— Total tries: 256*8 =
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Timing Attacks

* Assume there are no “typical” bugs in the software
— No buffer overflow bugs
— No format string vulnerabilities
— Good choice of randomness
— Good design

* The software may still be vulnerable to timing
attacks

— Software exhibits input-dependent timings

* Complex and hard to fully protect against
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Other Examples

* Plenty of other examples of timings attacks

— AES cache misses
* AES is the “Advanced Encryption Standard”
* Itis usedin SSH, SSL, IPsec, PGP, ...

— RSA exponentiation time

* RSAis a famous public-key encryption scheme

* It’s also used in many cryptographic protocols and
products
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