
CSE 484 / CSE M 584: Computer Security and Privacy

Software Security:
Buffer Overflow Defenses

and Miscellaneous
Spring 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Looking Forward

• Today: more on software security

• Friday: guest lecture by Karl Koscher

• Next week: finish software security, start crypto

• Reading #1 due Thursday (584M only)

• Homework #1 due Friday

• Lab #1 out!

– Submit your group + public key to the form sent out via email
– Instructions for creating a key are in the lab description

• Section this week: Lab 1

4/3/17 CSE 484 / CSE M 584 - Spring 2017 2

Buffer Overflow: Causes and Cures

• Typical memory exploit involves code injection
– Put malicious code at a predictable location in memory,

usually masquerading as data

– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code

2. Stack “canaries”

3. Encrypt pointers

4. Address space layout randomization

4/3/17 CSE 484 / CSE M 584 - Spring 2017 3

W-xor-X / DEP

• Mark all writeable memory locations as non-
executable
– Example: Microsoft’s Data Execution Prevention (DEP)
– This blocks (almost) all code injection exploits

• Hardware support
– AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
– Makes memory page non-executable

• Widely deployed
– Windows (since XP SP2),

Linux (via PaX patches),
OS X (since 10.5)

4/3/17 CSE 484 / CSE M 584 - Spring 2017 4

What Does W-xor-X Not Prevent?

4/3/17 CSE 484 / CSE M 584 - Spring 2017 5

• Can still corrupt stack …
– … or function pointers or critical data on the heap

• As long as “saved EIP” points into existing code,
W-xor-X protection will not block control transfer

• This is the basis of return-to-libc exploits
– Overwrite saved EIP with address of any library routine,

arrange stack to look like arguments

• Does not look like a huge threat
– Attacker cannot execute arbitrary code

return-to-libc on Steroids

• Overwritten saved EIP need not point to the
beginning of a library routine

• Any existing instruction in the code image is fine
– Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
– Execution will be transferred… to where?
– Read the word pointed to by stack pointer (ESP)

• Guess what? Its value is under attacker’s control!

– Use it as the new value for EIP
• Now control is transferred to an address of attacker’s choice!

– Increment ESP to point to the next word on the stack

4/3/17 CSE 484 / CSE M 584 - Spring 2017 6

Chaining RETs for Fun and Profit

• Can chain together sequences ending in RET
– Krahmer, “x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique” (2005)

• What is this good for?

• Answer [Shacham et al.]: everything
– Turing-complete language

– Build “gadgets” for load-store, arithmetic, logic, control
flow, system calls

– Attack can perform arbitrary computation using no
injected code at all – return-oriented programming

4/3/17 CSE 484 / CSE M 584 - Spring 2017 7

Return-Oriented Programming

4/3/17 CSE 484 / CSE M 584 - Spring 2017 8

Run-Time Checking: StackGuard

4/3/17 CSE 484 / CSE M 584 - Spring 2017 9

• Embed �canaries� (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Run-Time Checking: StackGuard

4/3/17 CSE 484 / CSE M 584 - Spring 2017 10

• Embed �canaries� (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Terminator canary: �\0�, newline, linefeed, EOF
– String functions like strcpy won�t copy beyond �\0�

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation

• Checking canary integrity prior to every function
return causes a performance penalty
– For example, 8% for Apache Web server

• StackGuard can be defeated
– A single memory write where the attacker controls both

the value and the destination is sufficient

4/3/17 CSE 484 / CSE M 584 - Spring 2017 11

Defeating StackGuard

4/3/17 CSE 484 / CSE M 584 - Spring 2017 12

• Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf
– Example: dst is a local pointer variable

buf sfp RET

Return execution to
this address

canarydst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

PointGuard

• Attack: overflow a function pointer so that it points
to attack code

• Idea: encrypt all pointers while in memory
– Generate a random key when program is executed

– Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
– Even if pointer is overwritten, after XORing with key it

will dereference to a “random” memory address

4/3/17 CSE 484 / CSE M 584 - Spring 2017 13

Normal Pointer Dereference

4/3/17 CSE 484 / CSE M 584 - Spring 2017 14

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]

PointGuard Dereference

4/3/17 CSE 484 / CSE M 584 - Spring 2017 15

[Cowan]

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786

Decrypt

Decrypts to
random value

0x9786

PointGuard Issues

• Must be very fast
– Pointer dereferences are very common

• Compiler issues
– Must encrypt and decrypt only pointers
– If compiler “spills” registers, unencrypted pointer values

end up in memory and can be overwritten there

• Attacker should not be able to modify the key
– Store key in its own non-writable memory page

• PG’d code doesn’t mix well with normal code
– What if PG’d code needs to pass a pointer to OS kernel?

4/3/17 CSE 484 / CSE M 584 - Spring 2017 16

ASLR: Address Space Randomization

• Map shared libraries to a random location in
process memory
– Attacker does not know addresses of executable code

• Deployment (examples)
– Windows Vista: 8 bits of randomness for DLLs
– Linux (via PaX): 16 bits of randomness for libraries
– Even Android
– More effective on 64-bit architectures

• Other randomization methods
– Randomize system call ids or instruction set

4/3/17 CSE 484 / CSE M 584 - Spring 2017 17

Example: ASLR in Vista

• Booting Vista twice loads libraries into
different locations:

4/3/17 CSE 484 / CSE M 584 - Spring 2017 18

ASLR Issues

• NOP slides and heap spraying to increase
likelihood for custom code (e.g. on heap)

• Brute force attacks or memory disclosures
to map out memory on the fly
– Disclosing a single address can reveal the

location of all code within a library

4/3/17 CSE 484 / CSE M 584 - Spring 2017 19

Other Possible Solutions

• Use safe programming languages, e.g., Java
– What about legacy C code?

– (Though Java doesn’t magically fix all security issues J)

• Static analysis of source code to find overflows

• Dynamic testing: “fuzzing”

• LibSafe: dynamically loaded library that intercepts
calls to unsafe C functions and checks that there’s
enough space before doing copies
– Also doesn’t prevent everything

4/3/17 CSE 484 / CSE M 584 - Spring 2017 20

Beyond Buffer Overflows…

4/3/17 CSE 484 / CSE M 584 - Spring 2017 21

Another Type of Vulnerability

• Consider this code:

• Goal: Open only regular files (not symlink, etc)
• What can go wrong?

4/3/17 CSE 484 / CSE M 584 - Spring 2017 22

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

TOCTOU (Race Condition)

• TOCTOU == Time of Check to Time of Use:

• Goal: Open only regular files (not symlink, etc)
• Attacker can change meaning of path between stat

and open (and access files he or she shouldn’t)
4/3/17 CSE 484 / CSE M 584 - Spring 2017 23

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

Another Type of Vulnerability

• Consider this code:

4/3/17 CSE 484 / CSE M 584 - Spring 2017 24

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);
typedef unsigned int size_t;

Integer Overflow and Implicit Cast

• Consider this code:

4/3/17 CSE 484 / CSE M 584 - Spring 2017 25

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);
typedef unsigned int size_t;

If len is negative, may
copy huge amounts

of input into buf.

Another Example

4/3/17 CSE 484 / CSE M 584 - Spring 2017 26

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

4/3/17 CSE 484 / CSE M 584 - Spring 2017 27

• What if len is large (e.g., len = 0xFFFFFFFF)?

• Then len + 5 = 4 (on many platforms)

• Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Password Checker

• Functional requirements
– PwdCheck(RealPwd, CandidatePwd) should:

• Return TRUE if RealPwd matches CandidatePwd

• Return FALSE otherwise

– RealPwd and CandidatePwd are both 8 characters long

• Implementation (like TENEX system)

• Clearly meets functional description

4/3/17 CSE 484 / CSE M 584 - Spring 2017 28

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE

Attacker Model

• Attacker can guess CandidatePwds through some
standard interface

• Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

• Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
– Total tries: 256*8 = 2048

4/3/17 CSE 484 / CSE M 584 - Spring 2017 29

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then
return FALSE

return TRUE

Timing Attacks

• Assume there are no “typical” bugs in the software
– No buffer overflow bugs

– No format string vulnerabilities

– Good choice of randomness

– Good design

• The software may still be vulnerable to timing
attacks
– Software exhibits input-dependent timings

• Complex and hard to fully protect against

4/3/17 CSE 484 / CSE M 584 - Spring 2017 30

Other Examples

• Plenty of other examples of timings attacks
– AES cache misses

• AES is the “Advanced Encryption Standard”

• It is used in SSH, SSL, IPsec, PGP, ...

– RSA exponentiation time
• RSA is a famous public-key encryption scheme

• It’s also used in many cryptographic protocols and
products

4/3/17 CSE 484 / CSE M 584 - Spring 2017 31

