CSE 484 [ CSE M 584: Computer Security and Privacy

Software Security:
Buffer Overflow Defenses
and Miscellaneous

Spring 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...



Looking Forward

* Today: more on software security
* Friday: guest lecture by Karl Koscher
* Next week: finish software security, start crypto

* Reading #1 due Thursday (584M only)

* Homework #1 due Friday

* Lab #1 out!
— Submit your group + public key to the form sent out via email
— Instructions for creating a key are in the lab description

e Section this week: Lab 1

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



Buffer Overflow: Causes and Cures

* Typical memory exploit involves code injection

— Put malicious code at a predictable location in memory,
usually masquerading as data

— Trick vulnerable program into passing control to it

 Possible defenses:
1. Prevent execution of untrusted code
Stack “canaries”

Encrypt pointers
Address space layout randomization

oW

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



W-xor-X /| DEP

* Mark all writeable memory locations as non-
executable

— Example: Microsoft’s Data Execution Prevention (DEP)
— This blocks (almost) all code injection exploits

* Hardware support
— AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
— Makes memory page non-executable

* Widely deployed -
— Windows (since XP SP2), ” - F—

Linux (via PaX patches), B
OS X (since 10.5)

Data Execution Prevention helps protect against damage from viruses and other
securi tvth ats. M

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



What Does W-xor-X Not Prevent?

* Can still corrupt stack...
— ... or function pointers or critical data on the heap

* As long as “saved EIP” points into existing code,
W-xor-X protection will not block control transfer

* This is the basis of return-to-libc exploits

— Overwrite saved EIP with address of any library routine,
arrange stack to look like arguments

* Does not look like a huge threat
— Attacker cannot execute arbitrary code

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



return-to-libc on Steroids

* Overwritten saved EIP need not point to the
beginning of a library routine

* Any existing instruction in the code image is fine
— Will execute the sequence starting from this instruction

* What if instruction sequence contains RET?
— Execution will be transferred... to where?

— Read the word pointed to by stack pointer (ESP)
e Guess what? Its value is under attacker’s control!

— Use it as the new value for EIP
e Now controlis transferred to an address of attacker’s choice!

— Increment ESP to point to the next word on the stack

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



Chaining RETs for Fun and Profit

* Can chain together sequences ending in RET

— Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

* What is this good for?

* Answer [Shacham et al.]: everything
— Turing-complete language

— Build “gadgets” for load-store, arithmetic, logic, control
flow, system calls

— Attack can perform arbitrary computation using no
injected code at all — return-oriented programming

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



Return-Oriented Programming

| @hf New ﬁl

Sahwday, Janay 6, 2007

Daily Blog Tips awarded th

La eek Darren gse, the  Daily Blog Tips is Ren
from the ampus  atfrdcting| a vast audierjce folls
Problogger blag, of | bloggers| |who |are imp
annduyjced the winners of looking to ove their
latest Group Wiitn blogs. Whdnjas about The
ct called 'Reviews\ the : 1 \Ylog that
and Predictions"/ Amon 18] ¢ £ a rela
tha
Iz
Re t|u/r|n o|r |ien |ted Pro|g|ra |mm |ing

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



Run-Time Checking: StackGuard

« Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

/\
- ¢ P w— = . .
re ~ Frame of the op O
buf sf . ! p
B <z uncton stack
N ~~ _J [ § v FE Y ,
Local variables Pointer to Return

previous execution to
frame this address

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



Run-Time Checking: StackGuard

« Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

Y

ret | Frameofthe Top of
buf sf . ! p
P addr v:ca”::ng fzuncv:ttonv: stack
N~ ~" -’ \ v J \ Y J)
Local variables Pointerto ~ Return

previous execution to
frame this address

* Choose random canary string on program start
— Attacker can’t guess what the value of canary will be

« Terminator canary: “\o~, newline, linefeed, EOF
— String functions like strcpy won’ t copy beyond “\o”

4[3/17 CSE 484 [ CSE M 584 - Spring 2017 10



StackGuard Implementation

* StackGuard requires code recompilation

* Checking canary integrity prior to every function
return causes a performance penalty
— For example, 8% for Apache Web server

e StackGuard can be defeated

— A single memory write where the attacker controls both
the value and the destination is sufficient

4/3/17 CSE 484 [ CSE M 584 - Spring 2017

11



Defeating StackGuard

* Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf

— Example: dst is a local pointer variable

H_I
Return execution to
this address
BadPointer, attack code &RET
A A~

=

Overwrite destination of strcpy with RET positiyﬁ

/ strcpy will copy
BadPointer here

4/3/17

CSE 484 [ CSE M 584 - Spring 2017 12



PointGuard

* Attack: overflow a function pointer so that it points
to attack code

* ldea: encrypt all pointers while in memory
— Generate a random key when program is executed

— Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory

* Pointers cannot be overflowed while in registers

* Attacker cannot predict the target program’s key

— Even if pointer is overwritten, after XORing with key it
will dereference to a “random’” memory address

4/3/17 CSE 484 [ CSE M 584 - Spring 2017 13



[Cowan]

Normal Pointer Dereference

Memory

Memory

4/3/17

1. Fetch pointer value

CPU

2. Access data referenced by pointer

<
Pointer b
0X1234 ata
0X1234

1. Fetch pointer value

U

2. Access attack code referenced
by corrupted pointer

Corruptied pointer
~~9x1@_4p_ " Data Attack
— code
0X1340
0Xx1234 0X1340

CSE 484 [ CSE M 584 - Spring 2017 14



[Cowan]

PointGuard Dereference

CPU

1. Fetch pointer 5 AQM 2. Access data referenced by pointer
value ecrypt
P}
Encryptgd pointer
Memory 07230 Data
0X1234
Decrypts to C P U
EIEBITNELE 2. Access random address;

0x9786 segmentation fault and crash

1. Fetch pointer
value Decrypt
Corrupted pointer Attack T
Memory resel pata code
0X1340
0x1234 0x1340 0x9786

4/3/17 CSE 484 [ CSE M 584 - Spring 2017 15



PointGuard Issues

* Must be very fast
— Pointer dereferences are very common
* Compilerissues

— Must encrypt and decrypt only pointers

— If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

Attacker should not be able to modify the key
— Store key in its own non-writable memory page

* PG’d code doesn’t mix well with normal code
— What if PG’d code needs to pass a pointer to OS kernel?

4/3/17 CSE 484 [ CSE M 584 - Spring 2017 16



ASLR: Address Space Randomization

* Map shared libraries to a random location in
process memory

— Attacker does not know addresses of executable code
* Deployment (examples)

— Windows Vista: 8 bits of randomness for DLLs

— Linux (via PaX): 16 bits of randomness for libraries

— Even Android

— More effective on 64-bit architectures
* Other randomization methods

— Randomize system call ids or instruction set

41317 CSE 484 | CSE M 584 - Spring 2017 17



Example: ASLR in Vista

* Booting Vista twice loads libraries into
different locations:

4/3/17

ntlanman.dll O0x6D7F0000 | Microsoft® Lan Manager
ntmarta.dll 0x/5370000 | Windows NT MARTA provider
ntshrui. dll Ox6F2C0000 | Shell extensions for sharing
ole32.dll 0x76160000 | Microsoft OLE for Windows
htlanman. dll Ox6DAI0000 | Microsoft® Lan Manager
ntmarta.dll Ox75660000 | Windows NT MARTA provider
htshrul.dll 0x6D3D0000 | Shell extensions for sharing
ole32.dll 0x763C0000 | Microsoft OLE for Windows

CSE 484 [ CSE M 584 - Spring 2017

18



ASLR Issues

* NOP slides and heap spraying to increase
likelihood for custom code (e.g. on heap)

* Brute force attacks or memory disclosures
to map out memory on the fly

— Disclosing a single address can reveal the
location of all code within a library

4/3/17 CSE 484 [ CSE M 584 - Spring 2017

19



Other Possible Solutions

* Use safe programming languages, e.g., Java
— What about legacy C code?
— (Though Java doesn’t magically fix all security issues ©)

 Static analysis of source code to find overflows
* Dynamic testing: “fuzzing”

* LibSafe: dynamically loaded library that intercepts
calls to unsafe C functions and checks that there’s
enough space before doing copies

— Also doesn’t prevent everything

4[3/17 CSE 484 [ CSE M 584 - Spring 2017 20



Beyond Buffer Overflows...

4/3/17 CSE 484 [ CSE M 584 - Spring 2017



Another Type of Vulnerability

e Consider this code:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error('only allowed to regular files!");
return -1;

}
return open(path, O RDONLY);

}

* Goal: Open only regular files (not symlink, etc)
* What can go wrong?



TOCTOU (Race Condition)

e TOCTOU ==Time of Check to Time of Use:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error('only allowed to regular files!");

return -1;

}
return open(path, O RDONLY);

}
* Goal: Open only regular files (not symlink, etc)

* Attacker can change meaning of path between stat
and open (and access files he or she shouldn’t)



Another Type of Vulnerability

 Consider this code:

char buf[80];
volid vulnerable() {

}

int len = read int from network();

char *p = read string from network();

if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;



Integer Overflow and Implicit Cast

» Consider this code: If len is negative, may
copy huge amounts

o S B0 7 of input into buf.

volid vulnerable() {

int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;



4/3/17

Another Example

size t len = read_int from network();

char *buf;
buf = malloc(len+5);

read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

CSE 484 [ CSE M 584 - Spring 2017

26



Integer Overflow and Implicit Cast

size t len = read_int from network();

char *buf;
buf = malloc(len+5);

read(fd, buf, len);

* What if lenis large (e.g., len = oXFFFFFFFF)?

* Thenlen + 5 =4 (on many platforms)
* Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)




Password Checker

* Functional requirements

— PwdCheck(RealPwd, CandidatePwd) should:
e Return TRUE if RealPwd matches CandidatePwd
e Return FALSE otherwise

— RealPwd and CandidatePwd are both 8 characters long
* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

* (learly meets functional description

4/3/17 CSE 484 [ CSE M 584 - Spring 2017

28



Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Try all 2568 =
possibilities
* Better: how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, second, third, ....

— Total tries: 256*8 =

4/3/17 CSE 484 [ CSE M 584 - Spring 2017

29



Timing Attacks

* Assume there are no “typical” bugs in the software
— No buffer overflow bugs
— No format string vulnerabilities
— Good choice of randomness
— Good design

* The software may still be vulnerable to timing
attacks

— Software exhibits input-dependent timings

* Complex and hard to fully protect against

4/3/17 CSE 484 [ CSE M 584 - Spring 2017 30



Other Examples

* Plenty of other examples of timings attacks

— AES cache misses
* AES is the “Advanced Encryption Standard”
* Itis usedin SSH, SSL, IPsec, PGP, ...

— RSA exponentiation time

* RSAis a famous public-key encryption scheme

* It’s also used in many cryptographic protocols and
products

4/3/17 CSE 484 [ CSE M 584 - Spring 2017

31



