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Admin

• Final project deadline #1 tonight
– Upload to Catalyst a PDF file that contains 
• (1) your group members’ names and UWNetIDs and 
• (2) a brief description of the topic of your 

presentation. 

– Sample presentations posted
• My office hours next week: 9:15am Wed (not Fri)
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Web Session Management
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Primitive Browser Session
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Store session information in URL; easily read on network



Bad Idea: Encoding State in URL

• Unstable, frequently changing URLs
• Vulnerable to eavesdropping and modification
• There is no guarantee that URL is private
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FatBrain.com circa 1999

• User logs into website with his password, 
authenticator is generated, user is given special 
URL containing the authenticator

– With special URL, user doesn’t need to re-authenticate
• Reasoning: user could not have not known the special URL 

without authenticating first.  That’s true, BUT…

• Authenticators are global sequence numbers
– It’s easy to guess sequence number for another user

– Partial fix: use random authenticators
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https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752



Typical Solution: 
Web Authentication via Cookies

• Servers can use cookies to store state on client
– When session starts, server computes an authenticator

and gives it back to browser in the form of a cookie
• Authenticators must be unforgeable and tamper-proof

– Malicious client shouldn’t be able to compute his own or modify 
an existing authenticator

• Example: MAC(server’s secret key, session id)
– With each request, browser presents the cookie
– Server recomputes and verifies the authenticator

• Server does not need to remember the authenticator
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Storing State in Hidden Forms
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• Dansie Shopping Cart (2006)
– “A premium, comprehensive, Perl shopping cart. Increase your web 

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST 
ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

Black Leather purse with leather straps<BR>Price: $20.00<BR>

<INPUT TYPE=HIDDEN NAME=name     VALUE="Black leather purse">
<INPUT TYPE=HIDDEN NAME=price    VALUE="20.00">
<INPUT TYPE=HIDDEN NAME=sh VALUE="1">
<INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
<INPUT TYPE=HIDDEN NAME=custom1  VALUE="Black leather purse 
with leather straps">

<INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Bargain shopping!

Fix: MAC client-side data, or, more likely, keep on server.



Top Web Vulnerabilities: Summary

• XSS (CSS) – cross-site scripting
– Malicious code injected into a trusted context (e.g., 

malicious data presented by an honest website 
interpreted as code by the user’s browser)

• SQL injection
– Malicious data sent to a website is interpreted as code in 

a query to the website’s back-end database
• XSRF (CSRF) – cross-site request forgery
– Bad website forces the user’s browser to send a request 

to a good website
• Broken authentication and session management
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Cross-Origin Communication?

• Websites can embed scripts, images, etc. from 
other origins.

• But: AJAX requests (aka XMLHttpRequests) are 
not allowed across origins.

5/12/17 CSE 484 / CSE M 584 - Spring 2017 10

On example.com:

<script>
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = handleStateChange; // Elsewhere 
xhr.open("GET", “https://bank.com/account_info”, true); 
xhr.send();
</script>



Cross-Origin Communication?

• Websites can embed scripts, images, etc. from 
other origins.

• But: AJAX requests (aka XMLHttpRequests) are 
not allowed across origins.

• Why not?
• Browser automatically includes cookies with requests 

(i.e., user credentials are sent)
• Caller can read returned data (clear SOP violation)
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Allowing Cross-Origin Communication

• Domain relaxation
– If two frames each set document.domain to the same value, 

then they can communicate
• E.g. www.facebook.com, facebook.com, and chat.facebook.com
• Must be a suffix of the actual domain

• Access-Control-Allow-Origin: <list of domains>
– Specifies one or more domains that may access DOM
– Typical usage: Access-Control-Allow-Origin: *

• HTML5 postMessage
– Lets frames send messages to each other in controlled fashion
– Unfortunately, many bugs in how frames check sender’s origin

5/12/17 CSE 484 / CSE M 584 - Spring 2017 12



What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader
• Goal: enable functionality that requires transcending 

the browser sandbox
• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for 
plugins decreasing (due to HTML5 and extensions)
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What about Browser Extensions?

• Most things you use today are probably extensions
• Examples: AdBlock, Ghostery, Mailvelope
• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to 
protect from malicious websites
– Privilege separation: extensions consist of multiple 

components with well-defined communication
– Least privilege: extensions request permissions
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What about Browser Extensions?

• But be wary of malicious extensions: not subject to the 
same-origin policy – can inject code into any webpage!
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