
CSE 484 / CSE M 584: Computer Security and Privacy

Web Security:
Loose Ends

Spring 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

• Final project deadline #1 tonight
– Upload to Catalyst a PDF file that contains
• (1) your group members’ names and UWNetIDs and
• (2) a brief description of the topic of your

presentation.

– Sample presentations posted
• My office hours next week: 9:15am Wed (not Fri)

5/12/17 CSE 484 / CSE M 584 - Spring 2016 2

Web Session Management

5/12/17 CSE 484 / CSE M 584 - Spring 2017 3

Primitive Browser Session

5/12/17 CSE 484 / CSE M 584 - Spring 2017 4

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check outSelect item

Store session information in URL; easily read on network

Bad Idea: Encoding State in URL

• Unstable, frequently changing URLs
• Vulnerable to eavesdropping and modification
• There is no guarantee that URL is private

5/12/17 CSE 484 / CSE M 584 - Spring 2017 5

FatBrain.com circa 1999

• User logs into website with his password,
authenticator is generated, user is given special
URL containing the authenticator

– With special URL, user doesn’t need to re-authenticate
• Reasoning: user could not have not known the special URL

without authenticating first. That’s true, BUT…

• Authenticators are global sequence numbers
– It’s easy to guess sequence number for another user

– Partial fix: use random authenticators

5/12/17 CSE 484 / CSE M 584 - Spring 2017 6

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

Typical Solution:
Web Authentication via Cookies

• Servers can use cookies to store state on client
– When session starts, server computes an authenticator

and gives it back to browser in the form of a cookie
• Authenticators must be unforgeable and tamper-proof

– Malicious client shouldn’t be able to compute his own or modify
an existing authenticator

• Example: MAC(server’s secret key, session id)
– With each request, browser presents the cookie
– Server recomputes and verifies the authenticator

• Server does not need to remember the authenticator

5/12/17 CSE 484 / CSE M 584 - Spring 2017 7

Storing State in Hidden Forms

5/12/17 CSE 484 / CSE M 584 - Spring 2017 8

• Dansie Shopping Cart (2006)
– “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST
ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

Black Leather purse with leather straps
Price: $20.00

<INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
<INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
<INPUT TYPE=HIDDEN NAME=sh VALUE="1">
<INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
<INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse
with leather straps">

<INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Bargain shopping!

Fix: MAC client-side data, or, more likely, keep on server.

Top Web Vulnerabilities: Summary

• XSS (CSS) – cross-site scripting
– Malicious code injected into a trusted context (e.g.,

malicious data presented by an honest website
interpreted as code by the user’s browser)

• SQL injection
– Malicious data sent to a website is interpreted as code in

a query to the website’s back-end database
• XSRF (CSRF) – cross-site request forgery
– Bad website forces the user’s browser to send a request

to a good website
• Broken authentication and session management

5/12/17 CSE 484 / CSE M 584 - Spring 2017 9

Cross-Origin Communication?

• Websites can embed scripts, images, etc. from
other origins.

• But: AJAX requests (aka XMLHttpRequests) are
not allowed across origins.

5/12/17 CSE 484 / CSE M 584 - Spring 2017 10

On example.com:

<script>
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = handleStateChange; // Elsewhere
xhr.open("GET", “https://bank.com/account_info”, true);
xhr.send();
</script>

Cross-Origin Communication?

• Websites can embed scripts, images, etc. from
other origins.

• But: AJAX requests (aka XMLHttpRequests) are
not allowed across origins.

• Why not?
• Browser automatically includes cookies with requests

(i.e., user credentials are sent)
• Caller can read returned data (clear SOP violation)

5/12/17 CSE 484 / CSE M 584 - Spring 2017 11

Allowing Cross-Origin Communication

• Domain relaxation
– If two frames each set document.domain to the same value,

then they can communicate
• E.g. www.facebook.com, facebook.com, and chat.facebook.com
• Must be a suffix of the actual domain

• Access-Control-Allow-Origin: <list of domains>
– Specifies one or more domains that may access DOM
– Typical usage: Access-Control-Allow-Origin: *

• HTML5 postMessage
– Lets frames send messages to each other in controlled fashion
– Unfortunately, many bugs in how frames check sender’s origin

5/12/17 CSE 484 / CSE M 584 - Spring 2017 12

What about Browser Plugins?

• Examples: Flash, Silverlight, Java, PDF reader
• Goal: enable functionality that requires transcending

the browser sandbox
• Increases browser’s attack surface

• Good news: plugin sandboxing improving, and need for
plugins decreasing (due to HTML5 and extensions)

5/12/17 CSE 484 / CSE M 584 - Spring 2016 13

What about Browser Extensions?

• Most things you use today are probably extensions
• Examples: AdBlock, Ghostery, Mailvelope
• Goal: Extend the functionality of the browser

• (Chrome:) Carefully designed security model to
protect from malicious websites
– Privilege separation: extensions consist of multiple

components with well-defined communication
– Least privilege: extensions request permissions

5/12/17 CSE 484 / CSE M 584 - Spring 2016 14

What about Browser Extensions?

• But be wary of malicious extensions: not subject to the
same-origin policy – can inject code into any webpage!

5/12/17 CSE 484 / CSE M 584 - Spring 2016 15

