
CSE 484 / CSE M 584: Computer Security and Privacy

Crypto meets Web Security:
Certificates and SSL/TLS

Spring 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

• Homework #2 (crypto) due Friday
– Individual assignment
– Please send your encrypted email early!

• Next part of course: web security
• Section this week: physical security

5/1/17 CSE 484 / CSE M 584 - Spring 2017 2

Public Key Crypto: Basic Problem

5/1/17 CSE 484 / CSE M 584 - Spring 2017 3

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob

Last Week

• Public key crypto protocols
– Based on underlying assumptions about hard problems
– Diffie Hellman and RSA
– Not in this course: elliptic curves

• Last time: confidentiality (no integrity or
authentication)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 4

Digital Signatures: Basic Idea

5/1/17 CSE 484 / CSE M 584 - Spring 2017 5

?

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed

public key

public key

Alice Bob

RSA Signatures

• Public key is (n,e), private key is (n,d)
• To sign message m: s = md mod n

– Signing & decryption are same underlying operation in RSA
– It’s infeasible to compute s on m if you don’t know d

• To verify signature s on message m:
verify that se mod n = (md)e mod n = m
– Just like encryption (for RSA primitive)
– Anyone who knows n and e (public key) can verify signatures

produced with d (private key)
• In practice, also need padding & hashing

– Standard padding/hashing schemes exist for RSA signatures

5/1/17 CSE 484 / CSE M 584 - Spring 2017 6

DSS Signatures

• Digital Signature Standard (DSS)
– U.S. government standard (1991, most recent rev. 2013)

• Public key: (p, q, g, y=gx mod p), private key: x
• Security of DSS requires hardness of discrete log
– If could solve discrete logarithm problem, would extract

x (private key) from gx mod p (public key)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 7

Cryptography Summary

• Goal: Privacy
– Symmetric keys:

• One-time pad, Stream ciphers
• Block ciphers (e.g., DES, AES) à modes: EBC, CBC, CTR

– Public key crypto (e.g., Diffie-Hellman, RSA)
• Goal: Integrity
– MACs, often using hash functions (e.g, MD5, SHA-256)

• Goal: Privacy and Integrity
– Encrypt-then-MAC

• Goal: Authenticity (and Integrity)
– Digital signatures (e.g., RSA, DSS)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 8

Authenticity of Public Keys

5/1/17 CSE 484 / CSE M 584 - Spring 2017 9

?

Problem: How does Alice know that the public key
she received is really Bob’s public key?

private key

Alice
Bob

public key

Threat: Man-In-The-Middle (MITM)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 10

Google.com

Distribution of Public Keys

• Public announcement or public directory
– Risks: forgery and tampering

• Public-key certificate
– Signed statement specifying the key and identity

• sigCA(“Bob”, PKB)

• Common approach: certificate authority (CA)
– Single agency responsible for certifying public keys
– After generating a private/public key pair, user proves

his identity and knowledge of the private key to obtain
CA’s certificate for the public key (offline)

– Every computer is pre-configured with CA’s public key

5/1/17 CSE 484 / CSE M 584 - Spring 2017 11

Trusted Certificate Authorities

5/1/17 CSE 484 / CSE M 584 - Spring 2017 12

Hierarchical Approach

• Single CA certifying every public key is impractical
• Instead, use a trusted root authority
– For example, Verisign
– Everybody must know the public key for verifying root

authority’s signatures
• Root authority signs certificates for lower-level

authorities, lower-level authorities sign certificates
for individual networks, and so on
– Instead of a single certificate, use a certificate chain

• sigVerisign(“AnotherCA”, PKAnotherCA), sigAnotherCA(“Alice”, PKA)
– What happens if root authority is ever compromised?

5/1/17 CSE 484 / CSE M 584 - Spring 2017 13

You encounter this every day…

5/1/17 CSE 484 / CSE M 584 - Spring 2017 14

SSL/TLS: Encryption & authentication for connections

Example of a Certificate

5/1/17 CSE 484 / CSE M 584 - Spring 2017 15

X.509 Certificate

5/1/17 CSE 484 / CSE M 584 - Spring 2017 16

Many Challenges…

• Hash collisions
• Weak security at CAs
– Allows attackers to issue rogue certificates

• Users don’t notice when attacks happen
– We’ll talk more about this later

• Etc…

5/1/17 CSE 484 / CSE M 584 - Spring 2017 17

Colliding Certificates

5/1/17 CSE 484 / CSE M 584 - Spring 2017 18

serial number

validity period

real cert
domain name

real cert
RSA key

X.509 extensions

signature
identical bytes

(copied from real cert)

collision bits
(computed)

chosen prefix
(difference)

serial number

validity period

rogue cert
domain name

???

X.509 extensions

signature

set by
the CA

Hash to the same
MD5 value!

Valid for both certificates!

[Sotirov et al. “Rogue Certificates”]

5/1/17 CSE 484 / CSE M 584 - Spring 2017 19

Attacking CAs

Security of DigiNotar
servers:
• All core certificate

servers controlled by
a single admin
password
(Pr0d@dm1n)

• Software on public-
facing servers out of
date, unpatched

• No anti-virus (could
have detected attack)

Consequences

• Attacker needs to first divert users to an attacker-
controlled site instead of Google, Yahoo, Skype,
but then…
– For example, use DNS to poison the mapping of

mail.yahoo.com to an IP address

• … “authenticate” as the real site
• … decrypt all data sent by users
– Email, phone conversations, Web browsing

5/1/17 CSE 484 / CSE M 584 - Spring 2017 20

More Rogue Certs

• In Jan 2013, a rogue *.google.com certificate
was issued by an intermediate CA that gained
its authority from the Turkish root CA TurkTrust
– TurkTrust accidentally issued intermediate CA certs to

customers who requested regular certificates
– Ankara transit authority used its certificate to issue a fake

*.google.com certificate in order to filter SSL traffic from its
network

• This rogue *.google.com certificate was trusted by
every browser in the world

5/1/17 CSE 484 / CSE M 584 - Spring 2017 21

Certificate Revocation

• Revocation is very important
• Many valid reasons to revoke a certificate
– Private key corresponding to the certified public key has

been compromised
– User stopped paying his certification fee to this CA and

CA no longer wishes to certify him
– CA’s private key has been compromised!

• Expiration is a form of revocation, too
– Many deployed systems don’t bother with revocation
– Re-issuance of certificates is a big revenue source for

certificate authorities

5/1/17 CSE 484 / CSE M 584 - Spring 2017 22

Certificate Revocation Mechanisms

• Certificate revocation list (CRL)
– CA periodically issues a signed list of revoked

certificates
• Credit card companies used to issue thick books of

canceled credit card numbers

– Can issue a “delta CRL” containing only updates

• Online revocation service
– When a certificate is presented, recipient goes to a

special online service to verify whether it is still valid
• Like a merchant dialing up the credit card processor

5/1/17 CSE 484 / CSE M 584 - Spring 2017 23

Attempt to Fix CA Problems: Convergence

• Background observation:
– Attacker will have a hard time mounting man-in-the-

middle attacks against all clients around the world

• Basic idea:
– Lots of nodes around the world obtaining SSL/TLS

certificates from servers
– Check responses across servers, and also observe

unexpected changes from existing certificates

http://convergence.io/

5/1/17 CSE 484 / CSE M 584 - Spring 2017 24

Keybase

• Basic idea:
– Rely on existing trust of a person’s ownership of other accounts

(e.g., Twitter, GitHub, website)
– Each user publishes signed proofs to their linked account

https://keybase.io/

5/1/17 CSE 484 / CSE M 584 - Spring 2017 25

SSL/TLS

• Secure Sockets Layer and Transport Layer Security
protocols
– Same protocol design, different crypto algorithms

• De facto standard for Internet security
– “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• Deployed in every Web browser; also VoIP,
payment systems, distributed systems, etc.

5/1/17 CSE 484 / CSE M 584 - Spring 2017 26

TLS Basics

• TLS consists of two protocols
– Familiar pattern for key exchange protocols

• Handshake protocol
– Use public-key cryptography to establish a shared

secret key between the client and the server

• Record protocol
– Use the secret symmetric key established in the

handshake protocol to protect communication
between the client and the server

5/1/17 CSE 484 / CSE M 584 - Spring 2017 27

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 28

C

ClientHello

S

Client announces (in plaintext):
• Protocol version it is running
• Cryptographic algorithms it supports
• Fresh, random number

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 29

C

C, versionc, suitesc, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by

both the client and the server
• Strongest cryptographic suite selected

from those offered by the client
• Fresh, random number

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 30

C

versions, suites, Ns,
ServerKeyExchange

SServer sends his public-key certificate
containing either his RSA, or
his Diffie-Hellman public key
(depending on chosen crypto suite)

C, versionc, suitesc, Nc

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 31

C

versions, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc, suitesc, Nc

ClientKeyExchange

The client generates secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

Basic Handshake Protocol

5/1/17 CSE 484 / CSE M 584 - Spring 2017 32

C

versions, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc, suitesc, Nc

{Secretc}PKs if using RSA

switch to keys derived
from secretc , Nc , Ns

C and S share
secret key material (secretc) at this point

switch to keys derived
from secretc , Nc , Ns

FinishedFinished

Record of all sent and
received handshake messages

“Core” SSL 3.0 Handshake (Not TLS)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 33

C

versions=3.0, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

{Secretc}PKs if using RSA

switch to keys derived
from secretc , Nc , Ns

C and S share
secret key material (secretc) at this point

switch to keys derived
from secretc , Nc , Ns

FinishedFinished

Version Rollback Attack

5/1/17 CSE 484 / CSE M 584 - Spring 2017 34

C

Versions=2.0, suites, Ns,
certificate,
“ServerHelloDone”

S

C, versionc=2.0, suitesc, Nc

{Secretc}PKs if using RSA

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished”messages)

Server is fooled into thinking he is
communicating with a client who
supports only SSL 2.0

“Chosen-Protocol” Attacks

• Why do people release new versions of security protocols?
Because the old version got broken!

• New version must be backward-compatible
– Not everybody upgrades right away

• Attacker can fool someone into using the old, broken version
and exploit known vulnerability
– Similar: fool victim into using weak crypto algorithms

• Defense is hard: must authenticate version in early designs
• Many protocols had “version rollback” attacks

– SSL, SSH, GSM (cell phones)

5/1/17 CSE 484 / CSE M 584 - Spring 2017 35

Version Check in SSL 3.0

5/1/17 CSE 484 / CSE M 584 - Spring 2017 36

C

versions=3.0, suites, Ns,
certificate for PKs,
“ServerHelloDone”

S

C, versionc=3.0, suitesc, Nc

{versionc, secretc}PKs

C and S share
secret key material secretc at this point

“Embed” version
number into secret

Check that received version is equal
to the version in ClientHello

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

