CSE 484 / CSE M 584: Computer Security and Privacy

Crypto meets Web Security: Certificates and SSL/TLS

Spring 2017

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Announcements

- Homework #2 (crypto) due Friday
 - Individual assignment
 - Please send your encrypted email early!
- Next part of course: web security
- Section this week: physical security

Public Key Crypto: Basic Problem

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

<u>Goals</u>: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself

Last Week

- Public key crypto protocols
 - Based on underlying assumptions about hard problems
 - Diffie Hellman and RSA
 - Not in this course: elliptic curves
- Last time: confidentiality (no integrity or authentication)

Digital Signatures: Basic Idea

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

<u>Goal</u>: Bob sends a "digitally signed" message

- 1. To compute a signature, must know the private key
- 2. To verify a signature, only the public key is needed

RSA Signatures

- Public key is (n,e), private key is (n,d)
- To sign message m: s = m^d mod n
 - Signing & decryption are same **underlying** operation in RSA
 - It's infeasible to compute s on m if you don't know d
- To verify signature s on message m: verify that s^e mod n = (m^d)^e mod n = m
 - Just like encryption (for RSA primitive)
 - Anyone who knows n and e (public key) can verify signatures produced with d (private key)
- In practice, also need padding & hashing
 - Standard padding/hashing schemes exist for RSA signatures

DSS Signatures

- Digital Signature Standard (DSS)
 - U.S. government standard (1991, most recent rev. 2013)
- Public key: (p, q, g, y=g^x mod p), private key: x
- Security of DSS requires hardness of discrete log

 If could solve discrete logarithm problem, would extract x (private key) from g^x mod p (public key)

Cryptography Summary

- Goal: Privacy
 - Symmetric keys:
 - One-time pad, Stream ciphers
 - Block ciphers (e.g., DES, AES) → modes: EBC, CBC, CTR
 - Public key crypto (e.g., Diffie-Hellman, RSA)
- Goal: Integrity
 - MACs, often using hash functions (e.g, MD5, SHA-256)
- Goal: Privacy and Integrity
 - Encrypt-then-MAC
- Goal: Authenticity (and Integrity)
 - Digital signatures (e.g., RSA, DSS)

Authenticity of Public Keys

<u>Problem</u>: How does Alice know that the public key she received is really Bob's public key?

Threat: Man-In-The-Middle (MITM)

Distribution of Public Keys

- Public announcement or public directory
 - Risks: forgery and tampering
- Public-key certificate
 - Signed statement specifying the key and identity
 - sig_{CA}("Bob", PK_B)
- Common approach: certificate authority (CA)
 - Single agency responsible for certifying public keys
 - After generating a private/public key pair, user proves his identity and knowledge of the private key to obtain CA's certificate for the public key (offline)
 - Every computer is <u>pre-configured</u> with CA's public key

Trusted Certificate Authorities

	Keychain Access					
	Click to unlock the System Roots keychain.				Q Search	
	Keychains Iogin Local Items System System Roots	Certificate Root	Certificate Root certificate authority Expires: Friday, February 9, 2035 at 1:40:36 PM Pa This certificate is valid		36 PM Pacific Standard Time	
		Name		^ Kind	Expires	
		📷 Admin(CA-CD-T01	certificate	Jan 25, 2016, 4:36:19 AM	
	Category	📷 AffirmT	rust Commercial	certificate	Dec 31, 2030, 6:06:06 AM	
R	All Items	😋 AffirmT	rust Networking	certificate	Dec 31, 2030, 6:08:24 AM	
/	Passwords Secure Notes My Certificates Keys Certificates	📷 AffirmT	rust Premium	certificate	Dec 31, 2040, 6:10:36 AM	
		📷 AffirmT	rust Premium ECC	certificate	Dec 31, 2040, 6:20:24 AM	
Sugar .		Meric 📷	a Onlication Authority	1 certificate	Nov 19, 2037, 12:43:00 PM	
0		📷 Americ	a Onlication Authority	2 certificate	Sep 29, 2037, 7:08:00 AM	
Binghan		📷 Apple I	Root CA	certificate	Feb 9, 2035, 1:40:36 PM	
		📷 Apple I	Root CA - G2	certificate	Apr 30, 2039, 11:10:09 AM	
		📷 Apple I	Root CA - G3	certificate	Apr 30, 2039, 11:19:06 AM	
		📷 Apple I	Root Certificate Authority	certificate	Feb 9, 2025, 4:18:14 PM	
		📷 Applica	ation CA G2	certificate	Mar 31, 2016, 7:59:59 AM	
		📷 Applica	ationCA	certificate	Dec 12, 2017, 7:00:00 AM	
		+ i Co	рру	213 items		

Hierarchical Approach

- Single CA certifying every public key is impractical
- Instead, use a trusted root authority
 - For example, Verisign
 - Everybody must know the public key for verifying root authority's signatures
- Root authority signs certificates for lower-level authorities, lower-level authorities sign certificates for individual networks, and so on
 - Instead of a single certificate, use a certificate chain
 - sig_{Verisign}("AnotherCA", PK_{AnotherCA}), sig_{AnotherCA}("Alice", PK_A)
 - What happens if root authority is ever compromised?

You encounter this every day...

SSL/TLS: Encryption & authentication for connections

Example of a Certificate

GeoTrust Global CA	t Authority G2 om						
Supervisition of the state							
Subject Name Country State/Province Locality Organization Common Name	US California Mountain View Google Inc *.google.com	Signature Algorithm Parameters Not Valid Before Not Valid After	SHA-1 with RSA Encryption (1.2.840.113549.1.1.5) none Wednesday, April 8, 2015 at 6:40:10 AM Pacific Daylight Time Monday, July 6, 2015 at 5:00:00 PM Pacific Daylight Time				
Issuer Name Country Organization Common Name Serial Number Version	US Google Inc Google Internet Authority G2 6082711391012222858 3 Signature		Elliptic Curve Public Key (1.2.840.10045.2.1) Elliptic Curve secp256r1 (1.2.840.10045.3.1.7) 65 bytes : 04 CB DD C1 CE AC D6 20 256 bits Encrypt, Verify, Derive 256 bytes : 34 8B 7D 64 5A 64 08 5B				

X.509 Certificate

Many Challenges...

- Hash collisions
- Weak security at CAs

- Allows attackers to issue rogue certificates

- Users don't notice when attacks happen
 We'll talk more about this later
- Etc...

https://mail.google.com/mail/u/0/#inbox

[Sotirov et al. "Rogue Certificates"]

Colliding Certificates

DigiNotar is a Dutch Certificate Authority. They sell SSL certificates.

Attacking CAs

Security of DigiNotar servers:

- All core certificate servers controlled by a single admin password (Prod@dm1n)
- Software on publicfacing servers out of date, unpatched
- No anti-virus (could have detected attack)

Somehow, somebody managed to get a rogue SSL certificate from them on **July 10th**, **2011**. This certificate was issued for domain name **.google.com**.

What can you do with such a certificate? Well, you can impersonate Google — assuming you can first reroute Internet traffic for google.com to you. This is something that can be done by a government or by a rogue ISP. Such a reroute would only affect users within that country or under that ISP.

Consequences

- Attacker needs to first divert users to an attackercontrolled site instead of Google, Yahoo, Skype, but then...
 - For example, use DNS to poison the mapping of mail.yahoo.com to an IP address
- ... "authenticate" as the real site
- ... decrypt all data sent by users
 - Email, phone conversations, Web browsing

More Rogue Certs

 In Jan 2013, a rogue *.google.com certificate was issued by an intermediate CA that gained its authority from the Turkish root CA TurkTrust

- TurkTrust accidentally issued intermediate CA certs to customers who requested regular certificates
- Ankara transit authority used its certificate to issue a fake
 *.google.com certificate in order to filter SSL traffic from its network
- This rogue *.google.com certificate was trusted by every browser in the world

Certificate Revocation

- Revocation is <u>very</u> important
- Many valid reasons to revoke a certificate
 - Private key corresponding to the certified public key has been compromised
 - User stopped paying his certification fee to this CA and CA no longer wishes to certify him
 - CA's private key has been compromised!
- Expiration is a form of revocation, too
 - Many deployed systems don't bother with revocation
 - Re-issuance of certificates is a big revenue source for certificate authorities

Certificate Revocation Mechanisms

- Certificate revocation list (CRL)
 - CA periodically issues a signed list of revoked certificates
 - Credit card companies used to issue thick books of canceled credit card numbers
 - Can issue a "delta CRL" containing only updates
- Online revocation service
 - When a certificate is presented, recipient goes to a special online service to verify whether it is still valid
 - Like a merchant dialing up the credit card processor

Attempt to Fix CA Problems: Convergence

- Background observation:
 - Attacker will have a hard time mounting man-in-themiddle attacks against all clients around the world
- Basic idea:
 - Lots of nodes around the world obtaining SSL/TLS certificates from servers
 - Check responses across servers, and also observe unexpected changes from existing certificates

http://convergence.io/

- Basic idea:
 - Rely on existing trust of a person's ownership of other accounts (e.g., Twitter, GitHub, website)
 - Each user publishes signed proofs to their linked account

https://keybase.io/

SSL/TLS

https://mail.google.com/mail/u/0/#inbox

- Secure Sockets Layer and Transport Layer Security
 protocols
 - Same protocol design, different crypto algorithms
- De facto standard for Internet security
 - "The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating applications"
- Deployed in every Web browser; also VoIP, payment systems, distributed systems, etc.

TLS Basics

- TLS consists of two protocols
 - Familiar pattern for key exchange protocols
- Handshake protocol
 - Use public-key cryptography to establish a shared secret key between the client and the server
- Record protocol
 - Use the secret symmetric key established in the handshake protocol to protect communication between the client and the server

"Core" SSL 3.0 Handshake (Not TLS)

Version Rollback Attack

"Chosen-Protocol" Attacks

- Why do people release new versions of security protocols? Because the old version got broken!
- New version must be backward-compatible
 - Not everybody upgrades right away
- Attacker can fool someone into using the old, broken version and exploit known vulnerability
 - Similar: fool victim into using weak crypto algorithms
- Defense is hard: must authenticate version in early designs
- Many protocols had "version rollback" attacks
 - SSL, SSH, GSM (cell phones)

Version Check in SSL 3.0

