
Spring 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography:
Hash Functions, MACs (finish)

Asymmetric Cryptography (start)

Reminder: Hash Functions

4/20/17 CSE 484 / CSE M 584 - Spring 2017 2

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

• Hash function H is a lossy compression function
– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message
“digest”

message

Reminder: Hash Function Properties

• One-Wayness
– Given y, it should be hard to find any x such that

h(x)=y

• Collision Resistance
– Should be hard to find x≠x’ such that h(x)=h(x’)

• Weak Collision Resistance
– Given x, hard to find x’ such that h(x)=h(x’)

4/20/17 CSE 484 / CSE M 584 - Spring 2017 3

Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
– A ciphertext can be decrypted with a decryption key…

hashes have no equivalent of “decryption”

• Hash(x) looks “random” but can be compared for
equality with Hash(x’)
– Hash the same input twice à same hash value

– Encrypt the same input twice à different ciphertexts

• Crytographic hashes are also known as
“cryptographic checksums” or “message digests”

4/20/17 CSE 484 / CSE M 584 - Spring 2017 4

Application: Password Hashing

• (Covered on Wednesday!)
• Instead of user password, store hash(password)

• When user enters a password, compute its hash
and compare with the entry in the password file
– System does not store actual passwords!

– Cannot go from hash to password!

4/20/17 CSE 484 / CSE M 584 - Spring 2017 5

Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received
by users without modification.

Idea: given goodFile and hash(goodFile), very hard to find
badFile such that hash(goodFile)=hash(badFile)

4/20/17 CSE 484 / CSE M 584 - Spring 2017 6

goodFile

BigFirm™ User

VIRUS

badFile

The NYTimes

hash(goodFile)

Which Property Do We Need?

• UNIX passwords stored as hash(password)
– One-wayness: hard to recover the/a valid password

• Integrity of software distribution (or lab 1 checkpoint!)
– Weak collision resistance
– But software images are not really random… may need full

collision resistance if considering malicious developers

• Auction bidding
– Alice wants to bid B, sends H(B), later reveals B
– One-wayness: rival bidders should not recover B (this may mean

that she needs to hash some randomness with B too)
– Collision resistance: Alice should not be able to change her mind

to bid B’ such that H(B)=H(B’)

4/20/17 CSE 484 / CSE M 584 - Spring 2017 7

Common Hash Functions

• MD5
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm)
– 160-bit output
– US government (NIST) standard as of 1993-95
– Also recently broken! (Theoretically -- not practical.)

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3: standard released by NIST in August 2015

4/20/17 CSE 484 / CSE M 584 - Spring 2017 8

Lifetimes of Hash Functions

4/20/17 CSE 484 / CSE M 584 - Spring 2017 9

http://valerieaurora.org/hash.html

https://security.googleblo
g.com/2017/02/announcin
g-first-sha1-collision.html

Recall: Achieving Integrity

4/20/17 CSE 484 / CSE M 584 - Spring 2017 12

Integrity and authentication: only someone who knows
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes: A tool for protecting integrity.

HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)

– Used in SSL/TLS, mandatory for IPsec

• Why not encryption?
– Hashing is faster than block ciphers in software

– Can easily replace one hash function with another

– There used to be US export restrictions on encryption

4/20/17 CSE 484 / CSE M 584 - Spring 2017 13

Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
– Obvious approach: Encrypt-and-MAC

– Problem: MAC is deterministic! same plaintext à same MAC

4/20/17 CSE 484 / CSE M 584 - Spring 2017 14

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

Authenticated Encryption

• Instead:
Encrypt then MAC.

• (Not as good:
MAC-then-Encrypt)

4/20/17 CSE 484 / CSE M 584 - Spring 2017 15

Encrypt-then-MAC

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Asymmetric (Public Key)
Cryptography

4/20/17 CSE 484 / CSE M 584 - Spring 2017 16

Public Key Crypto: Basic Problem

4/20/17 CSE 484 / CSE M 584 - Spring 2017 18

?

Given: Everybody knows Bob�s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob

Public Key Cryptography

• Everyone has 1 private key and 1 public key
– Or 2 private and 2 public, when considering both

encryption and authentication

• Mathematical relationship between private and
public keys

• Why do we think it is secure? (simplistic)
– Relies entirely on problems we believe are “hard”

4/20/17 CSE 484 / CSE M 584 - Spring 2017 19

Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)

4/20/17 CSE 484 / CSE M 584 - Spring 2017 20

Refresher: Modular Arithmetic

4/20/17 CSE 484 / CSE M 584 - Spring 2017 21

(see worksheet, Q2-4)

Diffie-Hellman Protocol (1976)
• Alice and Bob never met and share no secrets

• Public info: p and g
– p is a large prime number, g is a generator of Zp*

• Zp*={1, 2 … p-1}; �a � Zp* �i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p

4/20/17 CSE 484 / CSE M 584 - Spring 2017 22

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Diffie-Hellman: Conceptually

4/20/17 CSE 484 / CSE M 584 - Spring 2017 23

[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport:
gx mod p
gy mod p

Common secret: gxy mod p

4/20/17 CSE 484 / CSE M 584 - Spring 2017 24

Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem:
given gx mod p, it’s hard to extract x

– There is no known efficient algorithm for doing this

– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem:

given gx and gy, it’s hard to tell the difference between
gxy mod p and gr mod p where r is random

4/20/17 CSE 484 / CSE M 584 - Spring 2017 25

Properties of Diffie-Hellman

• Assuming DDH problem is hard (depends on choice of

parameters!), Diffie-Hellman protocol is a secure key
establishment protocol against passive attackers
– Eavesdropper can’t tell the difference between the

established key and a random value

– Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide
authentication

4/20/17 CSE 484 / CSE M 584 - Spring 2017 26

Requirements for Public Key Encryption

• Key generation: computationally easy to generate
a pair (public key PK, private key SK)

• Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
– Infeasible to learn anything about M from C without SK

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

4/20/17 CSE 484 / CSE M 584 - Spring 2017 27

