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CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography: 
Hash Functions, MACs (finish)

Asymmetric Cryptography (start)



Reminder: Hash Functions
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• Hash function H is a lossy compression function
– Collision: h(x)=h(x’) for distinct inputs x, x’

• H(x) should look “random”
– Every bit (almost) equally likely to be 0 or 1

• Cryptographic hash function needs a few properties…

message 
“digest”

message



Reminder: Hash Function Properties

• One-Wayness
– Given y, it should be hard to find any x such that 

h(x)=y

• Collision Resistance
– Should be hard to find x≠x’ such that h(x)=h(x’)

• Weak Collision Resistance
– Given x, hard to find x’ such that h(x)=h(x’)
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Hashing vs. Encryption

• Hashing is one-way. There is no “un-hashing”
– A ciphertext can be decrypted with a decryption key… 

hashes have no equivalent of “decryption”

• Hash(x) looks “random” but can be compared for 
equality with Hash(x’)
– Hash the same input twice à same hash value

– Encrypt the same input twice à different ciphertexts

• Crytographic hashes are also known as 
“cryptographic checksums” or “message digests”
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Application: Password Hashing

• (Covered on Wednesday!)
• Instead of user password, store hash(password)

• When user enters a password, compute its hash 
and compare with the entry in the password file
– System does not store actual passwords!

– Cannot go from hash to password! 
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Application: Software Integrity

Goal: Software manufacturer wants to ensure file is received 
by users without modification. 

Idea: given goodFile and hash(goodFile), very hard to find 
badFile such that hash(goodFile)=hash(badFile)
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Which Property Do We Need?

• UNIX passwords stored as hash(password)
– One-wayness: hard to recover the/a valid password

• Integrity of software distribution (or lab 1 checkpoint!)
– Weak collision resistance
– But software images are not really random… may need full 

collision resistance if considering malicious developers

• Auction bidding
– Alice wants to bid B, sends H(B), later reveals B
– One-wayness: rival bidders should not recover B (this may mean 

that she needs to hash some randomness with B too)
– Collision resistance: Alice should not be able to change her mind 

to bid B’ such that H(B)=H(B’)
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Common Hash Functions

• MD5
– 128-bit output
– Designed by Ron Rivest, used very widely
– Collision-resistance broken (summer of 2004)

• RIPEMD-160
– 160-bit variant of MD5

• SHA-1 (Secure Hash Algorithm)
– 160-bit output
– US government (NIST) standard as of 1993-95
– Also recently broken!  (Theoretically -- not practical.)

• SHA-256, SHA-512, SHA-224, SHA-384
• SHA-3:  standard released by NIST in August 2015
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Lifetimes of Hash Functions
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http://valerieaurora.org/hash.html

https://security.googleblo
g.com/2017/02/announcin
g-first-sha1-collision.html



Recall: Achieving Integrity
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Integrity and authentication: only someone who knows 
KEY can compute correct MAC for a given message.

Alice Bob

KEY
KEY

message

MAC: message authentication code
(sometimes called a “tag”)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Message authentication schemes:  A tool for protecting integrity.



HMAC

• Construct MAC from a cryptographic hash function
– Invented by Bellare, Canetti, and Krawczyk (1996)

– Used in SSL/TLS, mandatory for IPsec

• Why not encryption?
– Hashing is faster than block ciphers in software

– Can easily replace one hash function with another

– There used to be US export restrictions on encryption
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Authenticated Encryption

• What if we want both privacy and integrity?

• Natural approach: combine encryption scheme and a MAC.

• But be careful!
– Obvious approach: Encrypt-and-MAC

– Problem: MAC is deterministic! same plaintext à same MAC
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Authenticated Encryption

• Instead:           
Encrypt then MAC.

• (Not as good:                    
MAC-then-Encrypt)
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Asymmetric (Public Key) 
Cryptography
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Public Key Crypto: Basic Problem
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?

Given: Everybody knows Bob�s public key
Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

public key

public key

Alice
Bob



Public Key Cryptography

• Everyone has 1 private key and 1 public key
– Or 2 private and 2 public, when considering both 

encryption and authentication

• Mathematical relationship between private and 
public keys

• Why do we think it is secure? (simplistic)
– Relies entirely on problems we believe are “hard”

4/20/17 CSE 484 / CSE M 584 - Spring 2017 19



Applications of Public Key Crypto

• Encryption for confidentiality
– Anyone can encrypt a message

• With symmetric crypto, must know secret key to encrypt

– Only someone who knows private key can decrypt
– Key management is simpler (or at least different)

• Secret is stored only at one site: good for open environments

• Digital signatures for authentication
– Can “sign” a message with your private key

• Session key establishment
– Exchange messages to create a secret session key
– Then switch to symmetric cryptography (why?)
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Refresher: Modular Arithmetic
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(see worksheet, Q2-4)



Diffie-Hellman Protocol (1976) 
• Alice and Bob never met and share no secrets

• Public info: p and g
– p is a large prime number, g is a generator of Zp*

• Zp*={1, 2 … p-1}; �a � Zp* �i such that a=gi mod p

• Modular arithmetic: numbers “wrap around” after they reach p
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Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Diffie-Hellman: Conceptually
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[from Wikipedia]

Common paint: p and g

Secret colors: x and y

Send over public transport: 
gx mod p
gy mod p

Common secret: gxy mod p
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Why is Diffie-Hellman Secure?

• Discrete Logarithm (DL) problem: 
given gx mod p, it’s hard to extract x

– There is no known efficient algorithm for doing this

– This is not enough for Diffie-Hellman to be secure!

• Computational Diffie-Hellman (CDH) problem:
given gx and gy, it’s hard to compute gxy mod p

– … unless you know x or y, in which case it’s easy

• Decisional Diffie-Hellman (DDH) problem: 

given gx and gy, it’s hard to tell the difference between      
gxy mod p and gr mod p where r is random
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Properties of Diffie-Hellman

• Assuming DDH problem is hard (depends on choice of 

parameters!), Diffie-Hellman protocol is a secure key 
establishment protocol against passive attackers
– Eavesdropper can’t tell the difference between the 

established key and a random value

– Can use the new key for symmetric cryptography

• Diffie-Hellman protocol (by itself) does not provide 
authentication
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Requirements for Public Key Encryption

• Key generation: computationally easy to generate 
a pair (public key PK, private key SK)

• Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)

• Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
– Infeasible to learn anything about M from C without SK

– Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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