
CSE 484 / CSE M 584: Computer Security and Privacy

Software Security:
Buffer Overflow Defenses

Fall 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

• Please make sure you can access Lab 1 asap!
• Reminder: Lab 1 is much easier if you do the

recommended reading (see course schedule
for links):
– Smashing the Stack for Fun and Profit
– Exploiting Format String Vulnerabilities

10/9/17 CSE 484 / CSE M 584 - Fall 2017 2

Reminder: Printf

• Printf takes a variable number of arguments
– E.g., printf(“Here’s an int: %d”, 10);

• Assumptions about input can lead to trouble
– E.g., printf(buf) when buf=“Hello world” versus when

buf=“Hello world %d”
– Can be used to advance printf’s internal stack pointer
– Can read memory

• E.g., printf(“%x”) will print in hex format whatever printf’s internal
stack pointer is pointing to at the time

– Can write memory
• E.g., printf(“Hello%n”); will write “5” to the memory location

specified by whatever printf’s internal SP is pointing to at the time

10/9/17 CSE 484 / CSE M 584 - Fall 2017 3

How Can We Attack This?
foo() {

char buf[…];
strncpy(buf, readUntrustedInput(), sizeof(buf));
printf(buf); //vulnerable

}

What should readUntrustedInput() return??

10/9/17 CSE 484 / CSE M 584 - Fall 2017 4

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

If format string contains % then
printf will expect to find
arguments here…

Using %n to Overwrite Return Address

10/9/17 CSE 484 / CSE M 584 - Fall 2017 5

RET“… attackString%n”, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters in
attackString must be
equal to … what?

C allows you to concisely specify the “width” to print, causing printf to pad by printing
additional blank characters without reading anything else off the stack.
Example: printf(“%5d”, 10) will print three spaces followed by the integer: “ 10”
That is, %n will print 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

Buffer Overflow: Causes and Cures

• Typical memory exploit involves code injection
– Put malicious code at a predictable location in memory,

usually masquerading as data
– Trick vulnerable program into passing control to it

• Possible defenses:
1. Prevent execution of untrusted code
2. Stack “canaries”
3. Encrypt pointers
4. Address space layout randomization

10/9/17 CSE 484 / CSE M 584 - Fall 2017 6

W-xor-X / DEP

• Mark all writeable memory locations as non-
executable
– Example: Microsoft’s Data Execution Prevention (DEP)
– This blocks (almost) all code injection exploits

• Hardware support
– AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
– Makes memory page non-executable

• Widely deployed
– Windows (since XP SP2),

Linux (via PaX patches),
OS X (since 10.5)

10/9/17 CSE 484 / CSE M 584 - Fall 2017 7

What Does W-xor-X Not Prevent?

10/9/17 CSE 484 / CSE M 584 - Fall 2017 8

• Can still corrupt stack …
– … or function pointers or critical data on the heap

• As long as “saved EIP” points into existing code,
W-xor-X protection will not block control transfer

• This is the basis of return-to-libc exploits
– Overwrite saved EIP with address of any library routine,

arrange stack to look like arguments

• Does not look like a huge threat
– Attacker cannot execute arbitrary code

return-to-libc on Steroids

• Overwritten saved EIP need not point to the
beginning of a library routine

• Any existing instruction in the code image is fine
– Will execute the sequence starting from this instruction

• What if instruction sequence contains RET?
– Execution will be transferred… to where?
– Read the word pointed to by stack pointer (ESP)

• Guess what? Its value is under attacker’s control!
– Use it as the new value for EIP

• Now control is transferred to an address of attacker’s choice!
– Increment ESP to point to the next word on the stack

10/9/17 CSE 484 / CSE M 584 - Fall 2017 9

Chaining RETs for Fun and Profit

• Can chain together sequences ending in RET
– Krahmer, “x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique” (2005)

• What is this good for?
• Answer [Shacham et al.]: everything
– Turing-complete language
– Build “gadgets” for load-store, arithmetic, logic, control

flow, system calls
– Attack can perform arbitrary computation using no

injected code at all – return-oriented programming

10/9/17 CSE 484 / CSE M 584 - Fall 2017 10

Return-Oriented Programming

10/9/17 CSE 484 / CSE M 584 - Fall 2017 11

Run-Time Checking: StackGuard

10/9/17 CSE 484 / CSE M 584 - Fall 2017 12

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

Run-Time Checking: StackGuard

10/9/17 CSE 484 / CSE M 584 - Fall 2017 13

• Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
– Any overflow of local variables will damage the canary

• Choose random canary string on program start
– Attacker can’t guess what the value of canary will be

• Terminator canary: “\0”, newline, linefeed, EOF
– String functions like strcpy won’t copy beyond “\0”

Top of
stack

buf sfp ret
addr

Local variables Pointer to
previous

frame

Frame of the
calling function

Return
execution to
this address

canary

StackGuard Implementation

• StackGuard requires code recompilation
• Checking canary integrity prior to every function

return causes a performance penalty
– For example, 8% for Apache Web server

• StackGuard can be defeated
– A single memory write where the attacker controls both

the value and the destination is sufficient

10/9/17 CSE 484 / CSE M 584 - Fall 2017 14

Defeating StackGuard

10/9/17 CSE 484 / CSE M 584 - Fall 2017 15

• Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf
– Example: dst is a local pointer variable

buf sfp RET

Return execution to
this address

canarydst

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position
strcpy will copy
BadPointer here

PointGuard

• Attack: overflow a function pointer so that it points
to attack code

• Idea: encrypt all pointers while in memory
– Generate a random key when program is executed
– Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
• Pointers cannot be overflowed while in registers

• Attacker cannot predict the target program’s key
– Even if pointer is overwritten, after XORing with key it

will dereference to a “random” memory address

10/9/17 CSE 484 / CSE M 584 - Fall 2017 16

Normal Pointer Dereference

10/9/17 CSE 484 / CSE M 584 - Fall 2017 17

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
by corrupted pointer

Attack
code

[Cowan]

PointGuard Dereference

10/9/17 CSE 484 / CSE M 584 - Fall 2017 18

[Cowan]

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
value

0x1234

2. Access data referenced by pointer0x1234
Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
segmentation fault and crash

Attack
code

1. Fetch pointer
value

0x9786
Decrypt

Decrypts to
random value

0x9786

PointGuard Issues

• Must be very fast
– Pointer dereferences are very common

• Compiler issues
– Must encrypt and decrypt only pointers
– If compiler “spills” registers, unencrypted pointer values

end up in memory and can be overwritten there
• Attacker should not be able to modify the key
– Store key in its own non-writable memory page

• PG’d code doesn’t mix well with normal code
– What if PG’d code needs to pass a pointer to OS kernel?

10/9/17 CSE 484 / CSE M 584 - Fall 2017 19

ASLR: Address Space Randomization

• Map shared libraries to a random location in
process memory
– Attacker does not know addresses of executable code

• Deployment (examples)
– Windows Vista: 8 bits of randomness for DLLs
– Linux (via PaX): 16 bits of randomness for libraries
– Even Android
– More effective on 64-bit architectures

• Other randomization methods
– Randomize system call ids or instruction set

10/9/17 CSE 484 / CSE M 584 - Fall 2017 20

Example: ASLR in Vista

• Booting Vista twice loads libraries into
different locations:

10/9/17 CSE 484 / CSE M 584 - Fall 2017 21

ASLR Issues

• NOP slides and heap spraying to increase
likelihood for custom code (e.g., on heap)

• Brute force attacks or memory disclosures
to map out memory on the fly
– Disclosing a single address can reveal the

location of all code within a library

10/9/17 CSE 484 / CSE M 584 - Fall 2017 22

Other Possible Solutions

• Use safe programming languages, e.g., Java
– What about legacy C code?
– (Though Java doesn’t magically fix all security issues J)

• Static analysis of source code to find overflows
• Dynamic testing: “fuzzing”
• LibSafe: dynamically loaded library that intercepts

calls to unsafe C functions and checks that there’s
enough space before doing copies
– Also doesn’t prevent everything

10/9/17 CSE 484 / CSE M 584 - Fall 2017 23

