
CSE 484 / CSE M 584: Computer Security and Privacy

Software Security:
Buffer Overflow Attacks

(continued)

Fall 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

• Lab 1 Access:
– Try SSH, or check forum for groups who should have access

• Worksheets
– In my office

• Thanksgiving: no class Wednesday
– Alternate video assignment

• Looking forward
– Today + Monday: More buffer overflows + defenses
– Wednesday: more software security
– Then: start crypto

10/6/17 CSE 484 / CSE M 584 - Fall 2017 2

Stack	Frame	Structure
Lower	Addresses	

Higher	Addresses	

Code	executes	
(and	buffer	is	
written)	this	way

Stack	grows	
this	way

Function	Arguments

Saved	EIP	(Return	Address)

Saved	Frame	Pointer

Local	Variables

Function	Arguments

Saved	EIP	(Return	Address)

Saved	Frame	Pointer

Local	Variables

Stack	Frame

Stack	Pointer	(ESP)

Frame	Pointer	(EBP)

ß 4	bytes	(1	word)	à

Clarification

• The	frame	pointer	(%ebp)	does	in	fact	point	to	

the	address	of	the	saved	frame	pointer.

– Arguments	are	accessed	with	positive	offsets

– Locals	are	accessed	with	negative	offsets
• Source	of	confusion:	

– In	sploit0,	main()’s	stack	frame	appears	to	have	

space	for	local	variables,	even	though	it	doesn’t	

have	any.	This	is	because	the	stack	is	being	
aligned	to	a	16	byte	boundary.

10/6/17 CSE	484	/	CSE	M	584	- Fall	2017 4

Last Time: Basic Buffer Overflows

10/6/17 CSE 484 / CSE M 584 - Fall 2017 5

• Memory pointed to by str is copied onto stack…
void func(char *str) {

char buf[126];
strcpy(buf,str);

}

• If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations.

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

This will be interpreted as return address!

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Off-By-One Overflow

• Home-brewed range-checking string copy
void mycopy(char *input) {

char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];

}
void main(int argc, char *argv[]) {

if (argc==2)
mycopy(argv[1]);

}

• 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame…
– On little-endian architecture, make it point into buT for

previous function will be read from buffer10/6/17 CSE 484 / CSE M 584 - Fall 2017 6

This will copy 513
characters into
buffer. Oops!

Frame Pointer Overflow

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args

Fake RETFake FP
ATTACK

CODE

10/6/17 CSE 484 / CSE M 584 - Fall 2017 7

Another Variant:
Function Pointer Overflow

• C uses function pointers for callbacks: if
pointer to F is stored in memory location P,
then one can call F as (*P)(…)

10/6/17 CSE 484 / CSE M 584 - Fall 2017 8

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Heap

Legitimate function F

overflow

(elsewhere in memory)

Other Overflow Targets

• Format strings in C
– More details today

• Heap management structures used by
malloc()
– More details in section

• These are all attacks you can look forward to
in Lab #1 J

10/6/17 CSE 484 / CSE M 584 - Fall 2017 9

Variable Arguments in C

10/6/17 CSE 484 / CSE M 584 - Fall 2017 10

• In C, can define a function with a variable number
of arguments
– Example: void printf(const char* format, …)

• Examples of usage:

Format specification encoded by special % characters

%d,%i,%o,%u,%x,%X – integer argument
%s – string argument
%p – pointer argument (void *)
Several others

Format Strings in C

• Proper use of printf format string:
int foo = 1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:
foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

10/6/17 CSE 484 / CSE M 584 - Fall 2017 11

What happens if buffer
contains format symbols

starting with % ???

Implementation of Variable Args

• Special functions va_start, va_arg, va_end
compute arguments at run-time

10/6/17 CSE 484 / CSE M 584 - Fall 2017 12

printf has an internal
stack pointer

Format Strings in C

• Proper use of printf format string:
int foo=1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:
foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

10/6/17 CSE 484 / CSE M 584 - Fall 2017 13

What happens if buffer
contains format symbols

starting with % ???

Format Strings in C

• Proper use of printf format string:
int foo=1234;
printf(“foo = %d in decimal, %X in hex”,foo,foo);

This will print:
foo = 1234 in decimal, 4D2 in hex

• Sloppy use of printf format string:
char buf[14] = “Hello, world!”;
printf(buf);
// should’ve used printf(“%s”, buf);

10/6/17 CSE 484 / CSE M 584 - Fall 2017 14

What happens if buffer
contains format symbols

starting with % ???

If the buffer contains format symbols starting with %, the
location pointed to by printf’s internal stack pointer will be

interpreted as an argument of printf.

This can be exploited to move printf’s internal stack pointer!

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

10/6/17 CSE 484 / CSE M 584 - Fall 2017 15

Viewing Memory

• %x format symbol tells printf to output data on stack
printf(“Here is an int: %x”,i);

• What if printf does not have an argument?
char buf[16]=“Here is an int: %x”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

• Or what about:
char buf[16]=“Here is a string: %s”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

10/6/17 CSE 484 / CSE M 584 - Fall 2017 16

Writing Stack with Format Strings

• %n format symbol tells printf to write the number
of characters that have been printed

printf(“Overflow this!%n”,&myVar);

– Argument of printf is interpeted as destination address
– This writes 14 into myVar (“Overflow this!” has 14 characters)

• What if printf does not have an argument?
char buf[16]=“Overflow this!%n”;
printf(buf);

– Stack location pointed to by printf’s internal stack pointer will
be interpreted as address into which the number of
characters will be written.

10/6/17 CSE 484 / CSE M 584 - Fall 2017 17

How Can We Attack This?

foo() {
char buf[…] = “attackString”;
printf(buf); //vulnerable

}

What should “attackString” be??

10/6/17 CSE 484 / CSE M 584 - Fall 2017 18

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Printf’s frame

ret/IPSaved FP &buf

Foo’s frame

Using %n to Overwrite Return Address

10/6/17 CSE 484 / CSE M 584 - Fall 2017 19

RET�… attackString%n�, attack code &RET

When %n happens, make sure the location
under printf’s stack pointer contains address
of RET; %n will write the number of characters
in attackString into RET

Return
execution to
this address

Buffer with attacker-supplied input “string”

Number of characters in
attackString must be
equal to … what?

C allows you to concisely specify the “width” to print, causing printf to pad by printing
additional blank characters without reading anything else off the stack.

Example: printf(“%5d”, 10) will print three spaces followed by the integer: “ 10”
That is, %n will print 5, not 2.

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.

(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

SFP

Recommended Reading

• It will be hard to do Lab 1 without reading:
– Smashing the Stack for Fun and Profit

– Exploiting Format String Vulnerabilities

• Links to these readings are posted on the
course schedule.

10/6/17 CSE 484 / CSE M 584 - Fall 2017 20

