Loose Ends
(Finish Anonymity, “Fun” Side Channels)

Fall 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...
Admin

- **HW3 due** today @ 8pm

- **Final Projects due** Wednesday @ 11:59pm
 - Check out the rubric on the course website

- **Extra credit:** review up to 2 other presentations
 - We will make them available by 10am on Thursday

- **Extra credit readings due** today @ 11:59pm

- **Today:** finish anonymity, side channels
Onion Routing

- Sender chooses a random sequence of routers
 - Some routers are honest, some controlled by attacker
 - Sender controls the length of the path

[Reed, Syverson, Goldschlag 1997]
Route Establishment

- Routing info for each link encrypted with router’s public key
- Each router learns only the identity of the next router
Tor

- Second-generation onion routing network
 - http://tor.eff.org
 - Developed by Roger Dingledine, Nick Mathewson and Paul Syverson
 - Specifically designed for low-latency anonymous Internet communications
- Running since October 2003
- “Easy-to-use” client proxy
 - Freely available, can use it for anonymous browsing
• Client proxy establishes a symmetric session key and circuit with Onion Router #1
Tor Circuit Setup (2)

- Client proxy extends the circuit by establishing a symmetric session key with Onion Router #2
 - Tunnel through Onion Router #1
• Client proxy extends the circuit by establishing a symmetric session key with Onion Router #3
 – Tunnel through Onion Routers #1 and #2
Using a Tor Circuit

- Client applications connect and communicate over the established Tor circuit.
Tor Management Issues

• Many applications can share one circuit
 – Multiple TCP streams over one anonymous connection
• Tor router doesn’t need root privileges
 – Encourages people to set up their own routers
 – More participants = better anonymity for everyone
• Directory servers
 – Maintain lists of active onion routers, their locations, current public keys, etc.
 – Control how new routers join the network
 • “Sybil attack”: attacker creates a large number of routers
 – Directory servers’ keys ship with Tor code
Location Hidden Service

- **Goal:** deploy a server on the Internet that anyone can connect to *without knowing where it is or who runs it*
- Accessible from anywhere
- Resistant to censorship
- Can survive a full-blown DoS attack
- Resistant to physical attack
 - Can’t find the physical server!
Creating a Location Hidden Server

Server creates circuits to "introduction points"

Server gives intro points’ descriptors and addresses to service lookup directory

Client obtains service descriptor and intro point address from directory

Client Alice

Service Lookup Server

Bob’s Service

Introduction Points

Server Bob
Using a Location Hidden Server

Client creates a circuit to a “rendezvous point”

Client sends address of the rendezvous point and any authorization, if needed, to server through intro point

Rendezvous point splices the circuits from client & server

If server chooses to talk to client, connect to rendezvous point

Client Alice

Rendezvous Point

Server Bob

Introduction Points
Attacks on Anonymity

• Passive traffic analysis
 – Infer from network traffic who is talking to whom
 – To hide your traffic, must carry other people’s traffic!

• Active traffic analysis
 – Inject packets or put a timing signature on packet flow

• Compromise of network nodes
 – Attacker may compromise some routers
 – It is not obvious which nodes have been compromised
 • Attacker may be passively logging traffic
 – Better not to trust any individual router
 • Assume that some fraction of routers is good, don’t know which
Some Caution

- Tor isn’t completely effective by itself
 - Tracking cookies, fingerprinting, etc.
 - Exit nodes can see everything!
Side Channel Attacks

• Attacks based on information that can be gleaned from the physical implementation of a system, rather than breaking its theoretical properties
 – Most commonly/devastatingly used against cryptosystems
 – But also prevalent in other contexts, e.g., due to widespread smartphone sensors
Cache-Based Side Channels

By exploiting side channels that arise from shared CPU caches, researchers have demonstrated attacks extracting encryption keys of popular cryptographic algorithms such as AES, DES, and RSA.

Kim et al. “STEALTHMEM: System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud” USENIX Security 2012
Others (on Cryptosystems)

• Timing attacks
• Power analysis
• Etc.

If you do something different for secret key bits 1 vs. 0, attacker can learn something...
Key Extraction via Electric Potential

Accelerometer Eavesdropping

Aviv et al. “Practicality of Accelerometer Side Channels on Smartphones” ACSAC 2012
Gyroscope Eavesdropping

More Gyroscope

Chen et al. “TouchLogger: Inferring Keystrokes On Touch Screen From Smartphone Motion” HotSec 2011
Keyboard Eavesdropping

Zhuang et al. “Keyboard Acoustic Emanations Revisited” CCS 2005
Compromising Reflections
Audio from Video

Identifying Web Pages: Traffic Analysis

Figure 1: Website fingerprinting scenario and conceivable attackers

Herrmann et al. “Website Fingerprinting: Attacking Popular Privacy Enhancing Technologies with the Multinomial Naïve-Bayes Classifier” CCSW 2009
Identifying Web Pages: Electrical Outlets

Fig. 1: Time- and frequency-domain plots of several power traces as a MacBook loads two different pages. In the frequency domain, brighter colors represent more energy at a given frequency. Despite the lack of obviously characteristic information in the time domain, the classifier correctly identifies all of the above traces.

Clark et al. “Current Events: Identifying Webpages by Tapping the Electrical Outlet” ESORICS 2013
Powerline Eavesdropping

Figure 1: Frequency spectrogram showing various electrical appliances in the home. Washer cycle on (1) and off (2). CFL lamp turning off briefly (3) and then on (4). Note that the TV’s (Sharp 42” LCD) EMI shifts in frequency, which happens as screen content changes.

Enev et al.: Televisions, Video Privacy, and Powerline Electromagnetic Interference, CCS 2011
WRAP-UP
This Quarter

• Overview of:
 – Security mindset
 – Software security
 – Cryptography
 – Web security
 – Web privacy
 – Authentication
 – Mobile platform security
 – Usable security
 – Physical security
 – Anonymity
 – Side channels
Lots We Didn’t Cover...

• Deep dive into any of the above topics
• (Most) network security
• (Most) recent attacks/vulnerabilities
• (Most) specific protocols (e.g., Kerberos)
• Spam
• Social engineering
• Cryptocurrencies (e.g., Bitcoin)
• Emerging technologies (e.g., augmented reality, smart homes, brain-computer interfaces, synthetic biology, ...)
• ...

12/7/17
Thanks for a great quarter!

• Feel free to still email / stop by
 – Worksheets?

• Please fill out course evaluation:
 https://uw.iasystem.org/survey/183478