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Admin

• Today/Friday: mobile platform security

• Wednesday:
– Guest lecture: Christoph Kern, Google (web security)

• Assignments:
– Sign up for HW3 fuzzing access asap

– Project Checkpoint #2 due Friday
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Roadmap

• Mobile malware

• Mobile platforms vs. traditional platforms

• Deep dive into Android
– Continued Friday
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Questions: Mobile Malware

Q1: How might malware authors get malware 
onto phones? 

Q2: What are some goals that mobile device 
malware authors might have?

Q3: What technical things might malware 
authors do?
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Smartphone (In)Security

Users accidentally install malicious applications.
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Smartphone (In)Security

Even legitimate applications exhibit questionable behavior.

11/27/17 6

Hornyack et al.: 43 of 110 Android 
applications sent location or phone ID to 
third-party advertising/analytics servers.
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Mobile Malware Attack Vectors

• Unique to phones:
– Premium SMS messages 
– Identify location
– Record phone calls
– Log SMS 

• Similar to desktop/PCs: 
– Connects to botmasters
– Steal data
– Phishing 
– Malvertising
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Malware in the Wild

[Zhou et al.]

Android malware grew quickly!
Today: millions of samples.
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Mobile Malware Examples

• DroidDream (Android)
– Over 58 apps uploaded to Google app market

– Conducts data theft; send credentials to attackers 

• Zitmo (Symbian,BlackBerry,Windows,Android)
– Poses as mobile banking application

– Captures info from SMS – steal banking 2nd factors

– Works with Zeus botnet 

• Ikee (iOS) 
– Worm capabilities (targeted default ssh password) 

– Worked only on jailbroken phones with ssh installed
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Mobile Malware Examples
“ikee is never going to give you up”
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(Android) Malware in the Wild

What does it do?

Root 
Exploit

Remote Control Financial Charges Information Stealing

Net SMS Phone 
Call

SMS Block 
SMS

SMS Phone # User
Account

#
Families

20 27 1 4 28 17 13 15 3

# 
Samples

1204 1171 1 256 571 315 138 563 43

[Zhou et al.]
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Why all these problems with mobile malware?



Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.
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Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) 
trusted.
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Apps can do anything the UID 
they’re running under can do.



What’s Different about Mobile Platforms?

• Applications are isolated
– Each runs in a separate execution context
– No default access to file system, devices, etc.
– Different than traditional OSes where multiple 

applications run with the same user permissions!

• App Store: approval process for applications
– Market: Vendor controlled/Open
– App signing: Vendor-issued/self-signed
– User approval of permissions 
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More Details: Android

• Based on Linux

• Application sandboxes
– Applications run as                                                               

separate UIDs, in                                                                 
separate processes.

– Memory corruption                                                                
errors only lead to                                                                
arbitrary code execution in the context of the particular
application, not complete system compromise!

– (Can still escape sandbox – but must compromise Linux 
kernel to do so.) ß allows rooting
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[Enck et al.]

Since 5.0: ART (Android runtime)  
replaces Dalvik VM to run apps natively



Rooting and Jailbreaking

• Allows user to run applications with root privileges
– e.g., modify/delete system files, app management, CPU 

management, network management, etc.

• Done by exploiting vulnerability in firmware to 
install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
– Doesn’t allow “side-loading” apps, etc.
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Android Applications

• Activities provide user interfaces.
• Services run in the background.
• BroadcastReceivers receive messages sent to 

multiple applications (e.g., BOOT_COMPLETED).
• ContentProviders are databases addressable by 

their application-defined URIs.

• AndroidManifest.xml
– Specifies application components
– Specifies required permissions
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Challenges with Isolated Apps

So mobile platforms isolate applications for 
security, but…

1. Permissions: How can applications access 
sensitive resources?

2. Communication: How can applications 
communicate with each other?
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(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent 
such attacks by limiting applications’ access to:
– System Resources (clipboard, file system).

– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant 
permissions to applications?
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State of the Art
Prompts (time-of-use)
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Manifests (install-time)



State of the Art
Prompts (time-of-use) Manifests (install-time)

Disruptive, which leads to 
prompt-fatigue.
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State of the Art
Prompts (time-of-use) Manifests (install-time)

Out of context; not 
understood by users.

In practice, both are overly permissive: 
Once granted permissions, apps can misuse them.

Disruptive, which leads to 
prompt-fatigue.
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Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.
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Do users understand the warnings?

Are Manifests Usable?
[Felt et al.]
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Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?
[Felt et al.]
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