
CSE 484 / CSE M 584: Computer Security and Privacy

Mobile Platform Security [start]

Fall 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Admin

• Today/Friday: mobile platform security

• Wednesday:
– Guest lecture: Christoph Kern, Google (web security)

• Assignments:
– Sign up for HW3 fuzzing access asap

– Project Checkpoint #2 due Friday

11/27/17 CSE 484 / CSE M 584 - Fall 2017 2

Roadmap

• Mobile malware

• Mobile platforms vs. traditional platforms

• Deep dive into Android
– Continued Friday

11/27/17 CSE 484 / CSE M 584 - Fall 2017 3

Questions: Mobile Malware

Q1: How might malware authors get malware
onto phones?

Q2: What are some goals that mobile device
malware authors might have?

Q3: What technical things might malware
authors do?

11/27/17 CSE 484 / CSE M 584 - Fall 2017 4

Smartphone (In)Security

Users accidentally install malicious applications.

11/27/17 5CSE 484 / CSE M 584 - Fall 2017

Smartphone (In)Security

Even legitimate applications exhibit questionable behavior.

11/27/17 6

Hornyack et al.: 43 of 110 Android
applications sent location or phone ID to
third-party advertising/analytics servers.

CSE 484 / CSE M 584 - Fall 2017

Mobile Malware Attack Vectors

• Unique to phones:
– Premium SMS messages
– Identify location
– Record phone calls
– Log SMS

• Similar to desktop/PCs:
– Connects to botmasters
– Steal data
– Phishing
– Malvertising

11/27/17 CSE 484 / CSE M 584 - Fall 2017 7

Malware in the Wild

[Zhou et al.]

Android malware grew quickly!
Today: millions of samples.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 8

Mobile Malware Examples

• DroidDream (Android)
– Over 58 apps uploaded to Google app market

– Conducts data theft; send credentials to attackers

• Zitmo (Symbian,BlackBerry,Windows,Android)
– Poses as mobile banking application

– Captures info from SMS – steal banking 2nd factors

– Works with Zeus botnet

• Ikee (iOS)
– Worm capabilities (targeted default ssh password)

– Worked only on jailbroken phones with ssh installed

11/27/17 CSE 484 / CSE M 584 - Fall 2017 9

Mobile Malware Examples
“ikee is never going to give you up”

11/27/17 CSE 484 / CSE M 584 - Fall 2017 10

(Android) Malware in the Wild

What does it do?

Root
Exploit

Remote Control Financial Charges Information Stealing

Net SMS Phone
Call

SMS Block
SMS

SMS Phone # User
Account

#
Families

20 27 1 4 28 17 13 15 3

Samples

1204 1171 1 256 571 315 138 563 43

[Zhou et al.]

11/27/17 CSE 484 / CSE M 584 - Fall 2017 11

Why all these problems with mobile malware?

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less) trusted.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 12

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.
2. Once an application is installed, it’s (more or less) trusted.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 13

Background: Before Mobile Platforms

Assumptions in traditional OS (e.g., Unix) design:
1. There may be multiple users who don’t trust each other.

2. Once an application is installed, it’s (more or less)
trusted.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 14

Apps can do anything the UID
they’re running under can do.

What’s Different about Mobile Platforms?

• Applications are isolated
– Each runs in a separate execution context
– No default access to file system, devices, etc.
– Different than traditional OSes where multiple

applications run with the same user permissions!

• App Store: approval process for applications
– Market: Vendor controlled/Open
– App signing: Vendor-issued/self-signed
– User approval of permissions

11/27/17 CSE 484 / CSE M 584 - Fall 2017 15

More Details: Android

• Based on Linux

• Application sandboxes
– Applications run as

separate UIDs, in
separate processes.

– Memory corruption
errors only lead to
arbitrary code execution in the context of the particular
application, not complete system compromise!

– (Can still escape sandbox – but must compromise Linux
kernel to do so.) ß allows rooting

11/27/17 CSE 484 / CSE M 584 - Fall 2017 16

[Enck et al.]

Since 5.0: ART (Android runtime)
replaces Dalvik VM to run apps natively

Rooting and Jailbreaking

• Allows user to run applications with root privileges
– e.g., modify/delete system files, app management, CPU

management, network management, etc.

• Done by exploiting vulnerability in firmware to
install su binary.

• Double-edged sword…

• Note: iOS is more restrictive than Android
– Doesn’t allow “side-loading” apps, etc.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 17

Android Applications

• Activities provide user interfaces.
• Services run in the background.
• BroadcastReceivers receive messages sent to

multiple applications (e.g., BOOT_COMPLETED).
• ContentProviders are databases addressable by

their application-defined URIs.

• AndroidManifest.xml
– Specifies application components
– Specifies required permissions

11/27/17 CSE 484 / CSE M 584 - Fall 2017 18

Challenges with Isolated Apps

So mobile platforms isolate applications for
security, but…

1. Permissions: How can applications access
sensitive resources?

2. Communication: How can applications
communicate with each other?

11/27/17 CSE 484 / CSE M 584 - Fall 2017 19

(1) Permission Granting Problem

Smartphones (and other modern OSes) try to prevent
such attacks by limiting applications’ access to:
– System Resources (clipboard, file system).

– Devices (camera, GPS, phone, …).

Standard approach: Ask the user.

How should operating system grant
permissions to applications?

11/27/17 CSE 484 / CSE M 584 - Fall 2017 20

State of the Art
Prompts (time-of-use)

11/27/17 CSE 484 / CSE M 584 - Fall 2017 21

Manifests (install-time)

State of the Art
Prompts (time-of-use) Manifests (install-time)

Disruptive, which leads to
prompt-fatigue.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 22

State of the Art
Prompts (time-of-use) Manifests (install-time)

Out of context; not
understood by users.

In practice, both are overly permissive:
Once granted permissions, apps can misuse them.

Disruptive, which leads to
prompt-fatigue.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 23

Are Manifests Usable?

Do users pay attention to permissions?

[Felt et al.]

… but 88% of users looked at reviews.

11/27/17 CSE 484 / CSE M 584 - Fall 2017 24

Do users understand the warnings?

Are Manifests Usable?
[Felt et al.]

11/27/17 CSE 484 / CSE M 584 - Fall 2017 25

Do users act on permission information?

“Have you ever not installed an app because of permissions?”

Are Manifests Usable?
[Felt et al.]

11/27/17 CSE 484 / CSE M 584 - Fall 2017 26

