
Fall 2017

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, Ada Lerner, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 / CSE M 584: Computer Security and Privacy

Web Security:
Web Application Security [continued]

Admin

• Reminder: Friday is a holiday
– No class or office hours

• Lab 2
– Sign up if you haven’t!
– Check forum post for whether you should have

access (let us know if having trouble)
– FYI: Running your sites on

homes.cs.washington.edu is not a web security
things but a restriction of the lab itself

11/8/17 CSE 484 / CSE M 584 - Fall 2017 2

OWASP Top 10 Web Vulnerabilities

1. Injection
2. Broken Authentication & Session Management
3. Cross-Site Scripting
4. Insecure Direct Object References
5. Security Misconfiguration
6. Sensitive Data Exposure
7. Missing Function Level Access Control
8. Cross-Site Request Forgery
9. Using Known Vulnerable Components
10. Unvalidated Redirects and Forwards

11/8/17 CSE 484 / CSE M 584 - Fall 2017 3

http://www.owasp.org

Cross-Site Request Forgery
(CSRF/XSRF)

11/8/17 CSE 484 / CSE M 584 - Fall 2017 4

Cookie-Based Authentication Redux

11/8/17 CSE 484 / CSE M 584 - Fall 2017 5

ServerBrowser

Browser Sandbox Redux

• Based on the same origin policy (SOP)
• Active content (scripts) can send anywhere!

– For example, can submit a POST request
– Some ports inaccessible -- e.g., SMTP (email)

• Can only read response from the same origin
– … but you can do a lot with just sending!

11/8/17 CSE 484 / CSE M 584 - Fall 2017 6

Cross-Site Request Forgery

• Users logs into bank.com, forgets to sign off
– Session cookie remains in browser state

• User then visits a malicious website containing
<form name=BillPayForm
action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> …

<script> document.BillPayForm.submit(); </script>

• Browser sends cookie, payment request fulfilled!
• Lesson: cookie authentication is not sufficient

when side effects can happen

11/8/17 CSE 484 / CSE M 584 - Fall 2017 7

Cookies in Forged Requests

11/8/17 CSE 484 / CSE M 584 - Fall 2017 8

User credentials automatically
sent by browser

Cookie: SessionID=523FA4cd2E

Sending a Cross-Domain POST
<form method="POST" action=http://othersite.com/action >
...
</form>
<script>document.forms[0].submit()</script>

• Hidden iframe can do this in the background
• User visits a malicious page, browser submits

form on behalf of the user
– Hijack any ongoing session (if no protection)

• Netflix: change account settings, Gmail: steal contacts,
Amazon: one-click purchase

– Reprogram the user’s home router
– Many other attacks possible

11/8/17 CSE 484 / CSE M 584 - Fall 2017 9

submit post

XSRF (aka CSRF): Summary

11/8/17 CSE 484 / CSE M 584 - Fall 2017 10

Attack server

Server victim

User victim

1

2

4

Q: how long do you stay logged on to Gmail? Financial sites?

XSRF True Story

11/8/17 CSE 484 / CSE M 584 - Fall 2017 11

[Alex Stamos]

Internet Exploder

CyberVillians.com

StockBroker.com

ticker.stockbroker.com
Java

GET news.html

HTML and JS
www.cybervillians.com/news.html

B er nank e R eal l y an Al i en?

script
HTML Form POSTs

Hidden iframes submitted forms that…
• Changed user’s email notification settings
• Linked a new checking account
• Transferred out $5,000
• Unlinked the account
• Restored email notifications

Broader View of XSRF

• Abuse of cross-site data export
– SOP does not control data export
– Malicious webpage can initiates requests from

the user’s browser to an honest server
– Server thinks requests are part of the

established session between the browser and
the server (automatically sends cookies)

11/8/17 CSE 484 / CSE M 584 - Fall 2017 12

Login XSRF: Attacker logs you in as them!

11/8/17 CSE 484 / CSE M 584 - Fall 2017 13

User logged in
as attacker

Attacker’s account reflects user’s behavior

XSRF Defenses

11/8/17 CSE 484 / CSE M 584 - Fall 2017 14

• Secret validation token

• Referer validation

<input type=hidden value=23a3af01b>

Referer:
http://www.facebook.com/home.php

Add Secret Token to Forms

• “Synchronizer Token Pattern”
• Include a secret challenge token as a hidden input

in forms
– Token often based on user’s session ID
– Server must verify correctness of token before

executing sensitive operations

• Why does this work?
– Same-origin policy: attacker can’t read token out of

legitimate forms loaded in user’s browser, so can’t
create fake forms with correct token

11/8/17 CSE 484 / CSE M 584 - Fall 2017 15

<input type=hidden value=23a3af01b>

Referer Validation

11/8/17 CSE 484 / CSE M 584 - Fall 2017 16

• Lenient referer checking – header is optional
• Strict referer checking – header is required

Referer:
http://www.facebook.com/home.php

Referer:
http://www.evil.com/attack.html

Referer:

ü
û
?

Why Not Always Strict Checking?

• Why might the referer header be suppressed?
– Stripped by the organization’s network filter

• For example,
http://intranet.corp.apple.com/projects/iphone/competitors.html

– Stripped by the local machine
– Stripped by the browser for HTTPS ® HTTP transitions
– User preference in browser
– Buggy browser

• Web applications can’t afford to block these users

11/8/17 CSE 484 / CSE M 584 - Fall 2017 17

Web Session Management

11/8/17 CSE 484 / CSE M 584 - Fall 2017 18

Primitive Browser Session

11/8/17 CSE 484 / CSE M 584 - Fall 2017 19

www.e_buy.com

www.e_buy.com/
shopping.cfm?

pID=269

View catalog

www.e_buy.com/
shopping.cfm?

pID=269&
item1=102030405

www.e_buy.com/
checkout.cfm?

pID=269&
item1=102030405

Check outSelect item

Store session information in URL; easily read on network

Bad Idea: Encoding State in URL

• Unstable, frequently changing URLs
• Vulnerable to eavesdropping and modification
• There is no guarantee that URL is private

11/8/17 CSE 484 / CSE M 584 - Fall 2017 20

FatBrain.com circa 1999

• User logs into website with his password,
authenticator is generated, user is given special
URL containing the authenticator

– With special URL, user doesn’t need to re-authenticate
• Reasoning: user could not have not known the special URL

without authenticating first. That’s true, BUT…

• Authenticators are global sequence numbers
– It’s easy to guess sequence number for another user

– Partial fix: use random authenticators

11/8/17 CSE 484 / CSE M 584 - Fall 2017 21

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=me@me.com&p2=540555758

https://www.fatbrain.com/HelpAccount.asp?t=0&p1=SomeoneElse&p2=540555752

Typical Solution:
Web Authentication via Cookies

• Servers can use cookies to store state on client
– When session starts, server computes an authenticator

and gives it back to browser in the form of a cookie
• Authenticators must be unforgeable and tamper-proof

– Malicious client shouldn’t be able to compute his own or modify
an existing authenticator

• Example: MAC(server’s secret key, session id)

– With each request, browser presents the cookie
– Server recomputes and verifies the authenticator

• Server does not need to remember the authenticator

11/8/17 CSE 484 / CSE M 584 - Fall 2017 22

Storing State in Hidden Forms

11/8/17 CSE 484 / CSE M 584 - Fall 2017 23

• Dansie Shopping Cart (2006)
– “A premium, comprehensive, Perl shopping cart. Increase your web

sales by making it easier for your web store customers to order.”

<FORM METHOD=POST
ACTION="http://www.dansie.net/cgi-bin/scripts/cart.pl">

Black Leather purse with leather straps
Price: $20.00

<INPUT TYPE=HIDDEN NAME=name VALUE="Black leather purse">
<INPUT TYPE=HIDDEN NAME=price VALUE="20.00">
<INPUT TYPE=HIDDEN NAME=sh VALUE="1">
<INPUT TYPE=HIDDEN NAME=img VALUE="purse.jpg">
<INPUT TYPE=HIDDEN NAME=custom1 VALUE="Black leather purse
with leather straps">

<INPUT TYPE=SUBMIT NAME="add" VALUE="Put in Shopping Cart">

</FORM>

Change this to 2.00

Bargain shopping!

Fix: MAC client-side data, or, more likely, keep on server.

Top Web Vulnerabilities: Summary

• XSS (CSS) – cross-site scripting
– Malicious code injected into a trusted context

(e.g., malicious data presented by an honest website
interpreted as code by the user’s browser)

• SQL injection
– Malicious data sent to a website is interpreted as code in

a query to the website’s back-end database
• XSRF (CSRF) – cross-site request forgery

– Bad website forces the user’s browser to send a request
to a good website

• Broken authentication and session management

11/8/17 CSE 484 / CSE M 584 - Fall 2017 24

