CSE 484 In-section Worksheet #3

Q1. Which gdb command allows us to:

view the four words starting at ${\tt ebp}$ in hex? x/4xw \$ebp

- view the next five instructions at eip? x/5i eip
- view all instructions for function ${\tt foo?}$ disas foo

Q2. Which register does the x86 instruction RET affect? How, exactly?

"The ret instruction implements a subroutine return mechanism. This instruction first pops a code location off the hardware supported in-memory stack (see the pop instruction for details). It then performs an unconditional jump to the retrieved code location." https://www.cs.virginia.edu/~evans/cs216/guides/x86.html

Q3. What do tmalloc() and tfree() do? See slides page 6

Q4. What's the issue with this code?

```
char *p; char *q;
if ( (p = tmalloc(128)) == NULL)
{ exit(EXIT_FAILURE); }
if ( (q = tmalloc(128)) == NULL)
{ exit(EXIT_FAILURE); }
A
tfree(p);
tfree(q);
B
if ( (p = tmalloc(256)) == NULL)
{ exit(EXIT_FAILURE); }
obsd_strlcpy(p, arg, 256);
C
```

tfree(q); Double free!

Q5. Based on tmalloc.c, draw what the heap/free list looks like at points, A, B, and C. Include chunk structure and label p (at or before point B), p (at point C), and q. Where is buf copied? A:

				p			q						_			
	l		r		data		1		r		data					
		_ _		_ _				_ _		_ _			_			
в:	(t	hin	k o	f t	he lef	Et an	d r	igh	nt d	livi	lsions	of d	as a	implicit	because	of
CO	nso	lid	lati	on)												
				p						_q_						
	1		r		free	:	1	:	r	:						
		_ _		_ _		:_		_:_		_:_			_			
С:																
				p							q					
	l		r		data	(buf):	1	:	r	:					
							:		:		:					

Q6. Given your diagrams and the following code for chunk consolidation (from tmalloc.c), what do the following statements do when executed in the call tfree(q) after point C?

q->s.r = p->s.r; p->s.r->s.l = q;

slides page 10:

if we control chunks p (and q), this code will write the value of q (address of buffer?) to a location we specify (location of saved EIP?).