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Looking Forward

• Today: Introduction to Lab 2 + related concepts
• Wednesday & Monday: More web security
– No class or office hours on Friday!

• Lab #2 out; due 11/20
• Final Project Deadline #1 due Friday

• Section this week: More lab 2 and clickjacking
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Same-Origin Policy (Cookies)

• For cookies: Only code from same origin can 
read/write cookies associated with an origin.
– Can be set via Javascript (document.cookie=…) or 

via Set-Cookie header in HTTP response.
– Can narrow to subdomain/path (e.g., 

http://example.com can set cookie scoped to 
http://account.example.com/login.) 

– Secure cookie: send only via HTTPS.
– HttpOnly cookie: can’t access using JavaScript.



Same-Origin Policy (Cookies)

• Browsers automatically include cookies with 
HTTP requests.

• First-party cookie: belongs to top-level domain.
• Third-party cookie: belongs to domain of 

embedded content.

www.bar.com

www.foo.com

Bar’s Server

Foo’s Server

www.bar.com’s
cookie (1st party)

www.foo.com’s
cookie (3rd

party)



XSS: Cross-Site Scripting

• Idea: Place user-provided data in the page.
– Makes page more interactive and personal.

• Threat: Improperly used data can be 
interpreted as code.

• Solutions?
– Sanitize/validate input. (e.g., htmlspecialchars())

– Browser detection/prevention.



Server Side Scripts Review

• Before a webpage is sent to you, code is 
executed by the server 

• Can be use to set and read cookies for 
authentication 

• You will need a basic script to receive 
captured cookies 

• We will use PHP
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Lab 2
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Overview

• Pikachu, Meowth, and Cookies
– XSS; Today

• Jailbreak
– SQL Injection; Today if time

• Hack your 4.0!
– XSRF; Wednesday or Monday

11/7/17 CSE 484 / CSE M 584 - Spring 2017 8



Lab 2 XSS

• Give the TAs (codered.cs) a link with a XSS 
vulnerability. 

• TAs will ‘visit’ this link, and their cookie will 
be stolen. 

• The process of stealing cookie involves 
sending it to a place you control. 

• You’ll save the cookie, read it, and use it to 
log in
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Tools

• Web browser (Firefox or Chrome)
• Cookie editing capability
• A php script on homes.cs to capture cookies
– (see lab details)
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Lab 2 XSS
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codered.cs

homes.cs

Attacker (you)

unintended 
access; 
steal cookie

1

2

3

Malicious 
submission url
encoded

4

5 Save stolen cookie in 
browser

6 Login 
with 
cookie



Demo
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Preventing Cross-Site Scripting

• Any user input and client-side data must be 
preprocessed before it is used inside HTML

• Remove / encode HTML special characters
– Use a good escaping library

• OWASP ESAPI (Enterprise Security API)
• Microsoft’s AntiXSS

– In PHP, htmlspecialchars(string) will replace all 
special characters with their HTML codes
• ‘ becomes &#039;  “ becomes &quot;  & becomes &amp;

– In ASP.NET, Server.HtmlEncode(string)
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Evading XSS Filters

• Preventing injection of scripts into HTML is hard!
– Blocking “<” and “>” is not enough
– Event handlers, stylesheets, encoded inputs (%3C), etc.
– phpBB allowed simple HTML tags like <b>

<b c=“>” onmouseover=“script” x=“<b ”>Hello<b>

• Beware of filter evasion tricks (XSS Cheat Sheet)
– If filter allows quoting (of <script>, etc.), beware of 

malformed quoting: <IMG """><SCRIPT>alert("XSS")</SCRIPT>">

– Long UTF-8 encoding
– Scripts are not only in <script>:

<iframe src=‘https://bank.com/login’ onload=‘steal()’>
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SQL Injection
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Typical Login Prompt
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Typical Query Generation Code

$selecteduser = $_GET['user']; 
$sql = "SELECT Username, Key FROM Key " . 

"WHERE Username='$selecteduser'";
$rs = $db->executeQuery($sql); 

What if ‘user’ is a malicious string that changes the 
meaning of the query?
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User Input Becomes Part of Query
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname 
IS ‘$user’



Normal Login
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘jared’



Malicious User Input
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SQL Injection Attack
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Enter 
Username 

& 
Password Web

server

Web 
browser
(Client)

DB

SELECT passwd 
FROM USERS

WHERE uname 
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user 
accounts



Exploits of a Mom
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http://xkcd.com/327/



SQL Injection: Basic Idea
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Victim server

Victim SQL DB

Attacker

unintended 
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end 

database changes the meaning of query
• Special case of command injection



Authentication with Backend DB

set UserFound = execute(
“SELECT * FROM UserTable WHERE
username=‘ ” &  form(“user”) & “ ʹ AND   
password= ‘ ” &  form(“pwd”) & “ ʹ ” );

User supplies username and password, this SQL query checks if 
user/password combination is in the database

If not UserFound.EOF
Authentication correct

else Fail
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Only true if the result of SQL 
query is not empty, i.e., 
user/pwd is in the database



Using SQL Injection to Log In

• User gives username ’  OR 1=1 --
• Web server executes query

set UserFound=execute(
SELECT * FROM UserTable WHERE
username= ‘ ’ OR 1=1 -- … );

• Now all records match the query, so the result 
is not empty Þ correct “authentication”!
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Always true! Everything after -- is ignored!



Preventing SQL Injection

• Validate all inputs
– Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …
• Use escape characters to prevent special characters form 

becoming part of the query code
– E.g.: escape(O’Connor) = O\’Connor

– Check the data type (e.g., input must be an integer)
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Prepared Statements

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)
• Query is parsed without data parameters
• Bind variables are typed (int, string, …)
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Bind variable (data 
placeholder)

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html


