
CSE 484 / CSE M 584: Computer Security and
Privacy

Web security:
Lab 2 and Context

Fall 2017

Jared Moore
jlcmoore@cs.uw.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Looking Forward

• Today: Introduction to Lab 2 + related concepts
• Wednesday & Monday: More web security
– No class or office hours on Friday!

• Lab #2 out; due 11/20
• Final Project Deadline #1 due Friday

• Section this week: More lab 2 and clickjacking

11/7/17 CSE 484 / CSE M 584 - Spring 2017 2

Same-Origin Policy (Cookies)

• For cookies: Only code from same origin can
read/write cookies associated with an origin.
– Can be set via Javascript (document.cookie=…) or

via Set-Cookie header in HTTP response.
– Can narrow to subdomain/path (e.g.,

http://example.com can set cookie scoped to
http://account.example.com/login.)

– Secure cookie: send only via HTTPS.
– HttpOnly cookie: can’t access using JavaScript.

Same-Origin Policy (Cookies)

• Browsers automatically include cookies with
HTTP requests.

• First-party cookie: belongs to top-level domain.
• Third-party cookie: belongs to domain of

embedded content.

www.bar.com

www.foo.com

Bar’s Server

Foo’s Server

www.bar.com’s
cookie (1st party)

www.foo.com’s
cookie (3rd

party)

XSS: Cross-Site Scripting

• Idea: Place user-provided data in the page.
– Makes page more interactive and personal.

• Threat: Improperly used data can be
interpreted as code.

• Solutions?
– Sanitize/validate input. (e.g., htmlspecialchars())

– Browser detection/prevention.

Server Side Scripts Review

• Before a webpage is sent to you, code is
executed by the server

• Can be use to set and read cookies for
authentication

• You will need a basic script to receive
captured cookies

• We will use PHP

11/7/17 CSE 484 / CSE M 584 - Spring 2017 6

Lab 2

11/7/17 CSE 484 / CSE M 584 - Spring 2017 7

Overview

• Pikachu, Meowth, and Cookies
– XSS; Today

• Jailbreak
– SQL Injection; Today if time

• Hack your 4.0!
– XSRF; Wednesday or Monday

11/7/17 CSE 484 / CSE M 584 - Spring 2017 8

Lab 2 XSS

• Give the TAs (codered.cs) a link with a XSS
vulnerability.

• TAs will ‘visit’ this link, and their cookie will
be stolen.

• The process of stealing cookie involves
sending it to a place you control.

• You’ll save the cookie, read it, and use it to
log in

11/7/17 CSE 484 / CSE M 584 - Spring 2017 9

Tools

• Web browser (Firefox or Chrome)
• Cookie editing capability
• A php script on homes.cs to capture cookies
– (see lab details)

11/7/17 CSE 484 / CSE M 584 - Spring 2017 10

Lab 2 XSS

11/7/17 CSE 484 / CSE M 584 - Spring 2017 11

codered.cs

homes.cs

Attacker (you)

unintended
access;
steal cookie

1

2

3

Malicious
submission url
encoded

4

5 Save stolen cookie in
browser

6 Login
with
cookie

Demo

11/7/17 CSE 484 / CSE M 584 - Spring 2017 12

Preventing Cross-Site Scripting

• Any user input and client-side data must be
preprocessed before it is used inside HTML

• Remove / encode HTML special characters
– Use a good escaping library

• OWASP ESAPI (Enterprise Security API)
• Microsoft’s AntiXSS

– In PHP, htmlspecialchars(string) will replace all
special characters with their HTML codes
• ‘ becomes ' “ becomes " & becomes &

– In ASP.NET, Server.HtmlEncode(string)

11/7/17 CSE 484 / CSE M 584 - Fall 2017 13

Evading XSS Filters

• Preventing injection of scripts into HTML is hard!
– Blocking “<” and “>” is not enough
– Event handlers, stylesheets, encoded inputs (%3C), etc.
– phpBB allowed simple HTML tags like

<b c=“>” onmouseover=“script” x=“<b ”>Hello

• Beware of filter evasion tricks (XSS Cheat Sheet)
– If filter allows quoting (of <script>, etc.), beware of

malformed quoting: <SCRIPT>alert("XSS")</SCRIPT>">

– Long UTF-8 encoding
– Scripts are not only in <script>:

<iframe src=‘https://bank.com/login’ onload=‘steal()’>

11/7/17 CSE 484 / CSE M 584 - Fall 2017 14

SQL Injection

11/7/17 CSE 484 / CSE M 584 – Fall 2017 15

Typical Login Prompt

11/7/17 CSE 484 / CSE M 584 – Fall 2017 16

Typical Query Generation Code

$selecteduser = $_GET['user'];
$sql = "SELECT Username, Key FROM Key " .

"WHERE Username='$selecteduser'";
$rs = $db->executeQuery($sql);

What if ‘user’ is a malicious string that changes the
meaning of the query?

11/7/17 CSE 484 / CSE M 584 – Fall 2017 17

User Input Becomes Part of Query

11/7/17 CSE 484 / CSE M 584 – Fall 2017 18

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘$user’

Normal Login

11/7/17 CSE 484 / CSE M 584 – Fall 2017 19

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘jared’

Malicious User Input

11/7/17 CSE 484 / CSE M 584 – Fall 2017 20

SQL Injection Attack

11/7/17 CSE 484 / CSE M 584 – Fall 2017 21

Enter
Username

&
Password Web

server

Web
browser
(Client)

DB

SELECT passwd
FROM USERS

WHERE uname
IS ‘’; DROP TABLE

USERS; -- ’

Eliminates all user
accounts

Exploits of a Mom

11/7/17 CSE 484 / CSE M 584 – Fall 2017 22

http://xkcd.com/327/

SQL Injection: Basic Idea

11/7/17 CSE 484 / CSE M 584 – Fall 2017 23

Victim server

Victim SQL DB

Attacker

unintended
query

receive data from DB

1

2

3

• This is an input validation vulnerability
• Unsanitized user input in SQL query to back-end

database changes the meaning of query
• Special case of command injection

Authentication with Backend DB

set UserFound = execute(
“SELECT * FROM UserTable WHERE
username=‘ ” & form(“user”) & “ ʹ AND
password= ‘ ” & form(“pwd”) & “ ʹ ”);

User supplies username and password, this SQL query checks if
user/password combination is in the database

If not UserFound.EOF
Authentication correct

else Fail

11/7/17 CSE 484 / CSE M 584 – Fall 2017 24

Only true if the result of SQL
query is not empty, i.e.,
user/pwd is in the database

Using SQL Injection to Log In

• User gives username ’ OR 1=1 --
• Web server executes query

set UserFound=execute(
SELECT * FROM UserTable WHERE
username= ‘ ’ OR 1=1 -- …);

• Now all records match the query, so the result
is not empty Þ correct “authentication”!

11/7/17 CSE 484 / CSE M 584 – Fall 2017 25

Always true! Everything after -- is ignored!

Preventing SQL Injection

• Validate all inputs
– Filter out any character that has special meaning

• Apostrophes, semicolons, percent, hyphens, underscores, …
• Use escape characters to prevent special characters form

becoming part of the query code
– E.g.: escape(O’Connor) = O\’Connor

– Check the data type (e.g., input must be an integer)

11/7/17 CSE 484 / CSE M 584 – Fall 2017 26

Prepared Statements

PreparedStatement ps =
db.prepareStatement("SELECT pizza, toppings, quantity, order_day "

+ "FROM orders WHERE userid=? AND order_month=?");
ps.setInt(1, session.getCurrentUserId());
ps.setInt(2, Integer.parseInt(request.getParamenter("month")));
ResultSet res = ps.executeQuery();

• Bind variables: placeholders guaranteed to be data (not code)
• Query is parsed without data parameters
• Bind variables are typed (int, string, …)

11/7/17 CSE 484 / CSE M 584 – Fall 2017 27

Bind variable (data
placeholder)

http://java.sun.com/docs/books/tutorial/jdbc/basics/prepared.html

