CSE 484 / CSE M 584
Computer Security:
Lab 2 & Click Jacking

TA: Thomas Crosley
tcrosley@cs

Thanks to Franzi Roesner, Adrian Sham, and Vitaly Shmatikov for many previous
slides

Logistics / Reminders

Submit account info for Lab #2
— Link: http://goo.gl/forms/rXbXgXKWdY

Homework #2 due tomorrow (8pm).

Next office hour:

— Kevin and Thomas: 2-3pm
Lab #2: Web security

— Should be out tomorrow

XSS review

Cross-site scripting (XSS) is a type of computer
security vulnerability typically found is web
applications.

Allows the attacker to inject JavaScript into
web pages viewed by other users.

JavaScript can do a lot of things, like reading
cookies and ex-filtrating them.

Sanitize/validate your input
Browser detection

PHP review

A server-side programming language
File extension is .php

Before a webpage is sent to you, PHP code is
executed by the server

You won’t see the PHP code, only html

PHP can be use to set and read cookies for
authentication

You will need a basic PHP script to receive
captured cookies

Quick demo of XSS

Back story to Lab #2

* You finally decide to show your click-happy
Computer Security TAs who'’s da boss.

e Use XSS attacks to steal your TA's cookies, and
therefore access your gradebook to change
your grade.

e Use a SQL Injection to add yourself to Franzi’s
good list.

Basic setup

Give the TAs (codered.cs) a link with a XSS
vulnerability.

TAs will ‘visit’ this link, and cookie will be
stolen.

The process of stealing cookie involves
sending it to a place you control.

Save the cookie, read it, and use it to log in
and change your grade.

Easy!

What you will need

* Firefox, latest version should be OK
— Chrome might won’t work

* Firebug add-on for Firefox

* Setup a location to collect your stelen
liberated cookies
— Good place is homes.cs, FAQ here:

https://homes.cs.washington.edu/
FAQ.html

Overview of setup

codered.cs

Hacker (you)

homes.cs

Tips

Be mindful of Same Origin Policy
— Don’t redirect codered

Run JavaScript locally before sending to
codered

When URL encoding, be careful of new-lines in
XSS

— Browser might stop executing at newline

Talk to us if something feels wrong / confusing

Click Jacking

* Clickjacking happens when an attacker uses
different techniques to hijack clicks meant for
their page and routing them to another

* Multiple techniques

— Transparent Ul elements on top of a button or link
— Timing based attacks

https://www.owasp.org/index.php/Clickjacking

Example

Video of click jacking

https://www.youtube.com/watch?

v=9V4 emKyAg8

User is asked to play a game

Button is quickly switched to a ‘save’ button

* Following slides by Vitaly Shmatikov

* http://www.cs.utexas.edu/~shmat/courses/
cs361s/clickjack.ppt

Clickjacking (Ul Redressing)

[Hansen and Grossman 2008]

e Attacker overlays multiple transparent or
opaque frames to trick a user into clicking on a
button or link on another page

* Clicks meant for the visible page are hijacked
and routed to another, invisible page

Clickjacking in the Wild

e Google search for “clickjacking” returns 624,000
results... this is not a hypothetical threat!

* Summer 2010: Facebook worm superimposes an
invisible iframe over the entire page that links
back to the victim's Facebook page

— If victim is logged in, automatically recommends link
to new friends as soon as the page is clicked on

* Many clickjacking attacks against Twitter

— Users send out tweets against their will

It’s All About iFrame

o)
‘-

L ° 000 Mozilla Firefox
* Any site can frame any othersite = ...~
Web Images Sh

<iframe e O:g]ﬁ;L
src="http://www.google.com/...”>
</iframe> | e
* HTML attributes ‘
— Style

— Opacity defines visibility percentage of the iframe
* 1.0: completely visible
* 0.0: completely invisible

Hiding the Target Element
["Clickjacking: Attacks and Defenses”]
* Use CSS opacity property and z-index
property to hide target element and make
other element float under the target element

* Using CSS poilnter—-events: none
property to cover other element over the

Partial Overlays and Cropping
["Clickjacking: Attacks and Defenses”]
* Overlay other elements onto an iframe using
CSS z-index property or Flash Window Mode
wmode=direct Property

 Wrap target element in a new iframe and
choose CSS position offset properties

PayPal iframe PayPal iframe

Drag-and-Drop API

["Next Generation Clickjacking”]

* Modern browsers support drag-and-drop API

e JavaScript can use it to set data being dragged
and read it when it’s dropped

* Not restricted by the same origin policy:

data from one origin can be dragged to a
frame

of another origin

— Reason: drag-and-drop can only be initiated by
user’s mouse gesture, not by JavaScript on its own

Abusing Drag-and-Drop API

["Next Generation Clickjacking”]
1. Bait the user to click and start dragging

2. Invisible iframe with attacker’s 3. Invisible iframe from another
origin with a form field

text field under mouse cursor,
use API to set data being dragged

Clickjacking

* Trick users into interacting with sensitive user
interfaces in another domain.

— Using invisible iframes:

www.evil.com

Prime Quantity: [1 3:
Buy New

(@ Add to Cart l

or 1-Click Checkout

— Exploit predictable user timing:
http://lcamtuf.coredump.cx/ffeen2/

Fake Cursors

[“Clickjacking: Attacks and Defenses”]

e Use CSS cursor property and JavaScript to
simulate a fake cursor icon on the screen

R R

Clickjacking using the Cursor

Mecrarsca "ot [rperrect Soe

You will be redirected to the survey page in 60 seconds,

——

Qg
\

Fake cursor

Adobe Flash Player Settings
Camera and Microphone Access

www.webperflab.com is requestinﬁ access
you

to your camera and microphone.
click Allow, you may be recorded.

L ?)

(<] Lo_[‘@{w |[& Deny |

T
Real cursor

Figure 1: Cursor spoofing attack page. The target Flash Player webcam settings dialog is at the bottom right of the page, with a
“skip this ad” bait link remotely above it. Note there are two cursors displayed on the page: a fake cursor is drawn over the “skip
this ad” link while the actual pointer hovers over the webcam access “Allow” button.

[Figure from Huang et al., “Clickjacking: Attacks and Defenses”, USENIX Security, 2012]

Keyboard “Strokejacking”
["Clickjacking: Attacks and Defenses”]
* Simulate an input field getting focus, but
actually the keyboard focus is on target
element, forcing user to type some unwanted
information into target element

Attacker’s page Hidden iframe within attacker’s page

R

