CSE 484 / CSE M 584

Computer Security Section Week 4: Cryptography

> TA: Thomas Crosley tcrosley@cs

Thanks to Franzi Roesner and Adrian Sham for previous slides

[Examples/Images thanks to Wikipedia.]

Administrivia

- Lab 1 Final due next week (Friday 4/29, 8pm)
- Today
 - Fun Historical Ciphers
 - Crypto Review
 - Crypto Practice
 - CBC-MAC Issue

Fun Historical Ciphers

Caesar Cipher (Shift Cipher)

 Plaintext letters are replaced with letters a fixed shift away in the alphabet.

- Example:
 - Plaintext: The quick brown fox jumps over the lazy dog.
 - Key: Shift 3

ABCDEFGHIJKLMNOPQRSTUVWXYZ

- DEFGHIJKLMNOPQRSTUVWXYZABC
- Ciphertext: wkhtx lfneu rzqir amxps vryhu wkhod cbgrj

Caesar Cipher (Shift Cipher)

- ROT13: shift 13 (encryption and decryption are symmetric)
- What is the key space?

– 26 possible shifts.

How to attack shift ciphers?

- Brute force.

Substitution Cipher

- Superset of shift ciphers: each letter is substituted for another one.
- Monoalphabetic substitution cipher: fixed substitution over the entire message.
- Example:
 - Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Cipher: **ZEBRAS**CDFGHIJKLMNOPQTUVWXY

Substitution Cipher

- What is the key space? 26! ~= 2^88
- How to attack?

Bigrams:

3. tha

4. ent

5. ing

th	1.52%	en	0.55%		ng	0.18%
he	1.28%	ed	0.53%		of	0.16%
in	0.94%	to	0.52%		al	0.09%
er	0.94%	it	0.50%		de	0.09%
an	0.82%	ou	0.50%		se	0.08%
re	0.68%	ea	0.47%		le	0.08%
nd	0.63%	hi	0.46%		sa	0.06%
at	0.59%	is	0.46%		si	0.05%
on	0.57%	or	0.43%		ar	0.04%
nt	0.56%	ti	0.34%		ve	0.04%
ha	0.56%	as	0.33%		ra	0.04%
es	0.56%	te	0.27%		ld	0.02%
st	0.55%	et	0.19%		ur	0.02%
Trigrams:						
1.	the	6.ic	on	11.	nce	
2.	and	7.ti	.tio		edt	

8. for

9. nde

10.has

13. tis

14. oft

15. sth

Transposition Cipher

- Ciphertext is permutation of plaintext.
- Example: Route cipher
 - Plaintext: WE ARE DISCOVERED, FLEE AT ONCE
 - Arrangement:
 - WRIORFEOE
 - EESVELANJ
 - A D C E D E T C X
 - Key: "spiral inwards, clockwise, starting from top right"
 - Ciphertext: EJXCTEDECDAEWRIORFEONALEVSE

What is this?

Scytale (used by ancient Greeks/Spartans)

How is it used to do transposition?

- 1. Wrap
- 2. Write horizontally
- 3. Encrypt = unwrap
- 4. Decrypt = rewrap

Transposition/Substitution

• How to tell if ciphertext was encrypted using substitution or transposition cipher?

- If letter frequencies are normal, it's transposition.

- What happens if you combine substitution and transposition?
 - Substitution prevents anagram finding, transposition prevents digram/trigram analysis.

Vigenère Cipher (~1467)

- Polyalphabetic substitution cipher: use multiple substitution alphabets.
 A B C D E F G H I J K L M N O P Q R A A B C D E F G H I J K L M N O P Q R
- Example:
 - Plaintext: ATTACKATDAWN
 - Key: LEMONLEMONLE
 - Ciphertext: LXFOPVEFRNHR
- Encrypt:
 - (Key-Row, Msg-Col)
 - Or just addition mod 26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z FGHIJKLMNOPQRSTUVWXYZ B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A HIJKLMNOPQRSTUVWX G H I J K L M N O P Q R S T U V W X Y Z A B C J K L M N O P Q R S T U V W X Y Z HIJKLMNOPQRSTUVWXYZA BCDE J K L M N O P Q R S T U V W X Y Z A B GGH H H I J K L M N O P Q R S T U V W X Y Z A B IJKLMNOPQRSTUVWXYZABCDEFGH J K L M N O P Q R S T U V W X Y Z A B C D E F G K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J LLMN R S T U V W X Y Z A B C D E F G OPO M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L P Q R S T U V W X Y Z A B C D E F G H I O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P R R S T U V W X Y Z A B C D E F G H I J K L M N O P O S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U WWXYZABCDEFGHIJKLMNOPQR XXYZABCDEFGHIJKLMNOPQRSTUVW Y Z A B C D E F G H I J K L M N O P Q R S T U V W X ZZABCDEFGHIJKLMNOPQRSTUVWXY

Vigenère Cipher (~1467)

- Does this defeat frequency analysis?
 - Not if you know the length of the (repeating) key (e.g., if key length = 5, do frequency analysis on set of every 5th letter).
 - Even if you don't know the key length, just iterate with length=1...n until decryption looks sensible.
- What if the key doesn't repeat (i.e., length of key >= length of plaintext)?
 - One-time pad. (Same caveats: fully random key, use only once...)

Enigma Machine

Uses rotors (substitution cipher) that change position after each key.

Key = initial setting of rotors

Key space? 26ⁿ for n rotors

Steganography

• Hidden messages (security through obscurity)

Figure 1. Modern steganographic communication. The encoding step of a steganographic system identifies redundant bits and then replaces a subset of them with data from a secret message.

[Figure from "Hide and Seek: An Introduction to Steganography" by Niels Provos and Peter Honeyman]

Secret Messages in Video Games

- *Castle*: program that encodes secret messages in video game communications
 - Stony Brook University
 - Avoiding surveillance and firewalls in China
 - Still looks like a normal game from the outside
- Encode: message -> player movements
- Decode: player movements -> message

Source: http://www.wired.com/2015/04/app-hides-secret-messages-starcraft-style-games/

Crypto Review

Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.

Achieving Privacy (Symmetric)

Achieving Privacy (Asymmetric)

Key exchange

- Diffie-Hellman Key Agreement algorithm
- RSA key exchange process (Next week!)

https://technet.microsoft.com/en-us/library/cc962035.aspx

Achieving Integrity (Symmetric)

 Message authentication schemes: A tool for protecting integrity. (Also called message authentication codes or MACs)

Achieving Integrity (Asymmetric)

Digital signature schemes: A tool for protecting integrity and authenticity.

Pseudo Random Number Generator (PRNG)

- Algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers.
- In other word, sort of random, but not REALLY...

Crypto Practice

Diffie-Helman Protocol

- Alice and Bob never meet and share no secret
- Public info: p and g
 - P is a large prime (public info)
 - G is a generator (public info)
- Alice sends -> Bob g^xmod p
- Bob sends -> Alice g^ymod p
- $k = (g^x)^y = (g^y)^x = g^{xy} \mod p$ (shared secret)

Diffie Helman Practice Problem

- P = 11
- G = 7
- Alice's Private Key (x = 4)
- Bob's Private Key (y = 8)

• What is their shared key?

Practice Problem Solution

- Alice computes 7⁴ mod 11 = 3
- Bob computes 7⁸ mod 11 = 9
- Shared secret is $3^8 = 9^4 \mod 11 = 5$

CBC-MAC Problem

Integrity does not work here with variable length messages

CBC-MAC

CBC-MAC Problem

