CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography: Symmetric Encryption [continued]

Spring 2016

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Reminder

- Checkpoint for lab #1 due Monday @ 8pm
 - Submit md5 hashes to Catalyst dropbox

Recap: Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.

Achieving Privacy (Symmetric)

Encryption schemes: A tool for protecting privacy.

Achieving Privacy (Asymmetric)

Encryption schemes: A tool for protecting privacy.

Reducing Key Size

- What to do when it is infeasible to pre-share huge random keys?
 - When one-time pad is unrealistic...
- Use special cryptographic primitives: block ciphers, stream ciphers
 - Single key can be re-used (with some restrictions)
 - Not as theoretically secure as one-time pad

Stream Ciphers

- One-time pad: Ciphertext(Key, Message)=Message⊕Key
 - Key must be a random bit sequence as long as message
- Idea: replace "random" with "pseudo-random"
 - Use a pseudo-random number generator (PRNG)
 - PRNG takes a short, truly random secret seed and expands it into a long "random-looking" sequence
 - E.g., 128-bit seed into a 10⁶-bit pseudo-random sequence

No efficient algorithm can tell this sequence from truly random

- Ciphertext(Key,Msg)=Msg⊕PRNG(Key)
 - Message processed bit by bit (unlike block cipher)

Block Ciphers

- Operates on a single chunk ("block") of plaintext
 - For example, 64 bits for DES, 128 bits for AES
 - Each key defines a different permutation
 - Same key is reused for each block (can use short keys)

Permutations

- For N-bit input, 2^N! possible permutations
- Idea for how to use a keyed permutation: split plaintext into blocks; for each block use secret key to pick a permutation
 - Without the key, permutation should "look random"

Block Cipher Security

- Result should look like a random permutation on the inputs
 - Recall: not just shuffling bits. N-bit block cipher permutes over 2^N inputs.
- Only computational guarantee of secrecy
 - Not impossible to break, just very expensive
 - If there is no efficient algorithm (unproven assumption!), then can only break by brute-force, try-every-possible-key search
 - Time and cost of breaking the cipher exceed the value and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Standard Block Ciphers

DES: Data Encryption Standard

- Feistel structure: builds invertible function using noninvertible ones
- Invented by IBM, issued as federal standard in 1977
- 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys

56 bit keys are quite short

Key Size (bits)	Number of Alternative Keys	Time required at 1 encryption/μs	Time required at 10 ⁶ encryptions/μs
32	$2^{32} = 4.3 \times 10^9$	$2^{31} \mu s = 35.8 \text{ minutes}$	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	$2^{55} \mu s = 1142 \text{ years}$	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24} \text{ years}$	$5.4 \times 10^{18} \text{ years}$
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36} \text{ years}$	$5.9 \times 10^{30} \text{ years}$
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu\text{s} = 6.4 \times 10^{12} \text{years}$	6.4×10^6 years

- 1999: EFF DES Crack + distributed machines
 - < 24 hours to find DES key</p>
- DES ---> 3DES
 - 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Standard Block Ciphers

DES: Data Encryption Standard

- Feistel structure: builds invertible function using noninvertible ones
- Invented by IBM, issued as federal standard in 1977
- 64-bit blocks, 56-bit key + 8 bits for parity

AES: Advanced Encryption Standard

- New federal standard as of 2001
 - NIST: National Institute of Standards & Technology
- Based on the Rijndael algorithm
 - Selected via an open process
- 128-bit blocks, keys can be 128, 192 or 256 bits

Encrypting a Large Message

 So, we've got a good block cipher, but our plaintext is larger than 128-bit block size

• What should we do?

Electronic Code Book (ECB) Mode

- Identical blocks of plaintext produce identical blocks of ciphertext
- No integrity checks: can mix and match blocks

Information Leakage in ECB Mode

[Wikipedia]

Cipher Block Chaining (CBC) Mode: Encryption

- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
 - Still does not guarantee integrity

CBC Mode: Decryption

ECB vs. CBC

[Picture due to Bart Preneel]

CBC and Electronic Voting

Found in the source code for Diebold voting machines:

Counter Mode (CTR): Encryption

- Identical blocks of plaintext encrypted differently
- Can compute in parallel (unlike CBC)
- Still does not guarantee integrity; Fragile if ctr repeats

Counter Mode (CTR): Decryption

When is an Encryption Scheme "Secure"?

- Hard to recover the key?
 - What if attacker can learn plaintext without learning the key?
- Hard to recover plaintext from ciphertext?
 - What if attacker learns some bits or some function of bits?
- Fixed mapping from plaintexts to ciphertexts?
 - What if attacker sees two identical ciphertexts and infers that the corresponding plaintexts are identical?
 - Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?

- Attackers knows ciphertext and encryption algthm
 - What else does the attacker know? Depends on the application in which the cipher is used!
- Ciphertext-only attack
- KPA: Known-plaintext attack (stronger)
 - Knows some plaintext-ciphertext pairs
- CPA: Chosen-plaintext attack (even stronger)
 - Can obtain ciphertext for any plaintext of his choice
- CCA: Chosen-ciphertext attack (very strong)
 - Can decrypt any ciphertext <u>except</u> the target

Chosen Plaintext Attack

... repeat for any PIN value

Very Informal Intuition

Minimum security requirement for a modern encryption scheme

- Security against chosen-plaintext attack (CPA)
 - Ciphertext leaks no information about the plaintext
 - Even if the attacker correctly guesses the plaintext, he cannot verify his guess
 - Every ciphertext is unique, encrypting same message twice produces completely different ciphertexts
- Security against chosen-ciphertext attack (CCA)
 - Integrity protection it is not possible to change the plaintext by modifying the ciphertext

Why Hide Everything?

- Leaking even a little bit of information about the plaintext can be disastrous
- Electronic voting
 - 2 candidates on the ballot (1 bit to encode the vote)
 - If ciphertext leaks the parity bit of the encrypted plaintext, eavesdropper learns the entire vote
- Also, want a strong definition, that implies other definitions (like not being able to obtain key)