CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography: Symmetric Encryption

Spring 2016

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Alice and Bob

Archetypical characters

Common Communication Security Goals

Privacy of data:

Prevent exposure of information

Integrity of data:

Prevent modification of

information

Alice

History

- Substitution Ciphers
 - Caesar Cipher
- Transposition Ciphers
- Codebooks
- Machines

 Recommended Reading: The Codebreakers by David Kahn and The Code Book by Simon Singh.

History: Caesar Cipher (Shift Cipher)

 Plaintext letters are replaced with letters a fixed shift away in the alphabet.

- Example:
 - Plaintext: The quick brown fox jumps over the lazy dog
 - Key: Shift 3

ABCDEFGHIJKLMNOPQRSTUVWXYZ DEFGHIJKLMNOPQRSTUVWXYZABC

- Ciphertext: wkhtx Lfneu rzqir amxps vryhu wkhod cbgrj

History: Caesar Cipher (Shift Cipher)

- ROT13: shift 13 (encryption and decryption are symmetric)
- What is the key space?
 - 26 possible shifts.
- How to attack shift ciphers?
 - Brute force.

History: Substitution Cipher

- Superset of shift ciphers: each letter is substituted for another one.
- Add a secret key
- Example:
 - Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - Cipher: ZEBRASCDFGHIJKLMNOPQTUVWXY
- "State of the art" for thousands of years

History: Substitution Cipher

What is the key space? 26! ~= 2^88

History: Enigma Machine

Uses rotors (substitution cipher) that change position after each key.

Key = initial setting of rotors

Key space?

26ⁿ for n rotors

Kerckhoff's Principle

- Security of a cryptographic object should depend only on the secrecy of the secret (private) key.
- Security should not depend on the secrecy of the algorithm itself ("security by obscurity").

How Cryptosystems Work Today

- Layered approach:
 - Cryptographic primitives, like block ciphers, stream ciphers, hash functions, and one-way trapdoor permutations
 - Cryptographic protocols, like CBC mode encryption, CTR mode encryption, HMAC message authentication
- Public algorithms (Kerckhoff's Principle)
- Security proofs based on assumptions (not this course)
- Don't roll your own!

Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.

Symmetric Setting

Both communicating parties have access to a shared random string K, called the key.

Asymmetric Setting

Each party creates a public key pk and a secret key sk.

Achieving Privacy (Symmetric)

Encryption schemes: A tool for protecting privacy.

Achieving Privacy (Asymmetric)

Encryption schemes: A tool for protecting privacy.

Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.

Flavors of Cryptography

- Symmetric cryptography
 - Both communicating parties have access to a shared random string K, called the key.
 - Challenge: How do you privately share a key?
- Asymmetric cryptography
 - Each party creates a public key pk and a secret key sk.
 - Challenge: How do you validate a public key?

Confidentiality: Basic Problem

Given: both parties already know the same secret.

Goal: send a message confidentially.

How is this achieved in practice?

Any communication system that aims to guarantee confidentiality must solve this problem.

Reminder: Kerckhoff's Principle

- An encryption scheme should be secure even if enemy knows everything about it except the key
 - Attacker knows all algorithms
 - Attacker does not know random numbers
- Do not rely on secrecy of the algorithms ("security by obscurity")

Easy lesson:

use a good random number generator!

One-Time Pad

Cipher achieves perfect secrecy if and only if there are as many possible keys as possible plaintexts, and every key is equally likely (Claude Shannon, 1949)

Advantages of One-Time Pad

- Easy to compute
 - Encryption and decryption are the same operation
 - Bitwise XOR is very cheap to compute
- As secure as theoretically possible
 - Given a ciphertext, all plaintexts are equally likely, regardless of attacker's computational resources
 - as long as the key sequence is truly random
 - True randomness is expensive to obtain in large quantities
 - ... as long as each key is same length as plaintext
 - But how does sender communicate the key to receiver?

Problems with One-Time Pad

- Key must be as long as the plaintext
 - Impractical in most realistic scenarios
 - Still used for diplomatic and intelligence traffic
- Insecure if keys are reused
 - Attacker can obtain XOR of plaintexts
- Does not guarantee integrity
 - One-time pad only guarantees confidentiality
 - Attacker cannot recover plaintext, but can easily change it to something else

Dangers of Reuse

Learn relationship between plaintexts

$$C1 \oplus C2 = (P1 \oplus K) \oplus (P2 \oplus K) =$$

 $(P1 \oplus P2) \oplus (K \oplus K) = P1 \oplus P2$

No Integrity

Reducing Key Size

- What to do when it is infeasible to pre-share huge random keys?
 - When one-time pad is unrealistic...
- Use special cryptographic primitives: block ciphers, stream ciphers
 - Single key can be re-used (with some restrictions)
 - Not as theoretically secure as one-time pad