CSE 484 | CSE M 584: Computer Security and Privacy

Software Security:
Miscellaneous

Spring 2016

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Looking Forward

* Today: more on software security
* Friday: guest lecture by David Aucsmith
* Next week: finish software security, start crypto

e Ethics form due TODAY!
* Homework #1 due Friday
e Lab #1 out TODAY

— Submit your group + public key to the form sent out via email
— Instructions for creating a key are in the lab description

e Section this week: Lab 1

4/10/16 CSE 484 [CSE M 584 - Spring 2016

Return-Oriented Programming

R T Sy s e
B -

SR e W g W N PN SN GG it ot . . NI gt A

Sahoday, Jonay 6, 2007

Daily Blog Tips awarded th

Laft Jweek Datren Ese, the Daily Blog Tips is Ren
am

from the us atfrdcting] a vast audierjce folls
Problogger blag, of | bloggers| |who |are imp
anndugced the winners of looking to ove their
latest Group Wiitir blogs. Whin]as abjout The
ct called 'Reviews\ the : 1sN\Ylog that
and dictions"/ Amon, 18] ¢ e at/ rela
tha
C o
Re t|uir n o r |ien |ted Prolg|ra |mm|ing

4/10/16 CSE 484 [CSE M 584 - Spring 2016

Run-Time Checking: StackGuard

* Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return
— Any overflow of local variables will damage the canary

buf

~ Y
. Pointer to Return
Local variables previous execution to

frame this address

4/10/16 CSE 484 [CSE M 584 - Spring 2016

Run-Time Checking: StackGuard

* Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

N

-~ ; R
buf sf é FRan e s p
P ac? r | icaling finction:: <tack
~~ ~" o \ Y J \ Y)
Local variables Pointer to Return

previous execution to
frame this address

* Choose random canary string on program start
— Attacker can’t guess what the value of canary will be

« Terminator canary: “\o~, newline, linefeed, EOF
— String functions like strcpy won’ t copy beyond “\o”

4/10/16 CSE 484 [CSE M 584 - Spring 2016

StackGuard Implementation

* StackGuard requires code recompilation

* Checking canary integrity prior to every function
return causes a performance penalty

— For example, 8% for Apache Web server

e StackGuard can be defeated

— A single memory write where the attacker controls both
the value and the destination is sufficient

4/10/16 CSE 484 [CSE M 584 - Spring 2016

Defeating StackGuard

* Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf

— Example: dst is a local pointer variable

buf

H_I

Return execution to
this address

\d

BadPointer, attack code

A

&RET

-

Overwrite destination of strcpy with RET positi%

/ strcpy will copy
BadPointer here

4/10/16

CSE 484 [CSE M 584 - Spring 2016

PointGuard

* Attack: overflow a function pointer so that it points
to attack code

* ldea: encrypt all pointers while in memory
— Generate a random key when program is executed

— Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
 Pointers cannot be overflowed while in registers

* Attacker cannot predict the target program’s key

— Even if pointer is overwritten, after XORing with key it
will dereference to a “random’ memory address

4/10/16 CSE 484 [CSE M 584 - Spring 2016 8

[Cowan]

Normal Pointer Dereference

Memory

Memory

4/10/16

1. Fetch pointer value

CPU

2. Access data referenced by pointer

1. Fetch pointer value

)

Y

Pointer b

0X1234 ata
0X1234

2. Access attack code referenced
by corrupted pointer

Corruptied pointer
—Tox234 | Data AtfjaCk
0Xx1340 code
0x1234 0X1340

CSE 484 [CSE M 584 - Spring 2016 9

[Cowan]

PointGuard Dereference

CPU
A'X1234

1. Fetch pointer 2. Access data referenced by pointer
value Decrypt
<
M Encrypted pointer b
0Xx1234
Decrypts to C P U
random value 2. Access random address;

. 0x9786 segmentation fault and crash
1. Fetch pointer
value Decrypt
Corruptied pointer Attack T
—ox7239| Data
Memory o729 code
0x1234 0x1340 0x9786

4/10/16 CSE 484 [CSE M 584 - Spring 2016 10

PointGuard Issues

* Must be very fast
— Pointer dereferences are very common
* Compilerissues

— Must encrypt and decrypt only pointers

— If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

Attacker should not be able to modify the key
— Store key in its own non-writable memory page

* PG’d code doesn’t mix well with normal code
— What if PG’d code needs to pass a pointer to OS kernel?

4/10/16 CSE 484 [CSE M 584 - Spring 2016 11
g

ASLR: Address Space Randomization

* Map shared libraries to a random location in
process memory

— Attacker does not know addresses of executable code
* Deployment (examples)

— Windows Vista: 8 bits of randomness for DLLs

— Linux (via PaX): 16 bits of randomness for libraries

— Even Android

— More effective on 64-bit architectures

* Other randomization methods
— Randomize system call ids or instruction set

4/10/16 CSE 484 [CSE M 584 - Spring 2016 12
g

Example: ASLR in Vista

* Booting Vista twice loads libraries into
different locations:

4/10/16

ntlanman.dll 0x6D7F0000 | Microsoft® Lan Manager
ntmarta. dll 0x75370000 | Windows NT MARTA provider
ntshrui.dll Ox6F2C0000 | Shell extensions for sharing
ole32.dIl 0x/6160000 | Microsoft OLE for Windows
ntlanman. dll Ox6DA30000 | Microsoft® Lan Manager
ntmarta.dll 0x75660000 | Windows NT MARTA provider
htshrul.dll 0x6D3D0000 | Shell extensions for sharing
ole32.dll 0x/63C0000 | Microsoft OLE for Windows

CSE 484 [CSE M 584 - Spring 2016

13

ASLR Issues

* NOP slides and heap spraying to increase
likelihood for custom code (e.g. on heap)

* Brute force attacks or memory disclosures to
map out memory on the fly

— Disclosing a single address can reveal the
location of all code within a library

4/10/16 CSE 484 [CSE M 584 - Spring 2016 14

Other Possible Solutions

* Use safe programming languages, e.g., Java
— What about legacy C code?
— (Note that Java is not the complete solution)

 Static analysis of source code to find overflows
* Dynamic testing: “fuzzing”

* LibSafe: dynamically loaded library that intercepts
calls to unsafe C functions and checks that there’s
enough space before doing copies

— Also doesn’t prevent everything

4/10/16 CSE 484 [CSE M 584 - Spring 2016 15

Beyond Buffer Overflows...

4/10/16 CSE 484 [CSE M 584 - Spring 2016

Another Type of Vulnerability

e Consider this code:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
1f (!S ISRREG(s.st mode)) {
error("only allowed to regqgular files!");
return -1;

}
return open(path, O RDONLY) ;

}

* Goal: Open only regular files (not symlink, etc)
* What can go wrong?

TOCTOU (Race Condition)

e TOCTOU ==Time of Check to Time of Use:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
1f (!S ISRREG(s.st mode)) {
error("only allowed to regqgular files!");

return -1;

}
return open(path, O RDONLY) ;

}
* Goal: Open only regular files (not symlink, etc)

* Attacker can change meaning of path between stat
and open (and access files he or she shouldn’t)

Another Type of Vulnerability

 Consider this code:

char buf[80];
volid vulnerable() {
int len = read int from network();

char *p = read string from network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

Integer Overflow and Implicit Cast

» Consider this code: If len is negative, may
copy huge amounts

SaET R[S F of input into buf.

volid vulnerable() {

int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

4/10/16

Another Example

size t len = read int from network();

char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
CSE 484 [CSE M 584 - Spring 2016

21

Integer Overflow and Implicit Cast

size t len = read int from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

* Whatif lenis large (e.g., len = oXFFFFFFFF)?
* Thenlen + 5 =4 (on many platforms)

* Result: Allocate a 4-byte buffer, then read a lot of
data into that bufter.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)
4/10/16 CSE 484 [CSE M 584 - Spring 2016 22

Password Checker

* Functional requirements

— PwdCheck(RealPwd, CandidatePwd) should:
 Return TRUE if RealPwd matches CandidatePwd
e Return FALSE otherwise

— RealPwd and CandidatePwd are both 8 characters long
* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

* (Clearly meets functional description

4/10/16 CSE 484 [CSE M 584 - Spring 2016

23

Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Tryall 2568 =18,446,744,073,709,551,616
possibilities

e Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then third,

— Total tries: 256*8 = 2048

4/10/16 CSE 484 [CSE M 584 - Spring 2016

24

Timing Attacks

* Assume there are no “typical” bugs in the software
— No buffer overflow bugs
— No format string vulnerabilities
— Good choice of randomness
— Good design

* The software may still be vulnerable to timing
attacks
— Software exhibits input-dependent timings

* Complex and hard to fully protect against

4/10/16 CSE 484 [CSE M 584 - Spring 2016 25

Other Examples

* Plenty of other examples of timings attacks

— AES cache misses
* AES is the “Advanced Encryption Standard”
e Itisusedin SSH, SSL, IPsec, PGP, ...

— RSA exponentiation time
* RSAis a famous public-key encryption scheme

* It’s also used in many cryptographic protocols and
products

4/10/16 CSE 484 [CSE M 584 - Spring 2016

26

Randomness Issues

* Many applications (especially security ones)
require randomness

* Explicit uses:
— Generate secret cryptographic keys
— Generate random initialization vectors for encryption

e Other “non-obvious” uses:

— Generate passwords for new users

— Shuffle the order of votes (in an electronic voting
machine)

— Shuffle cards (for an online gambling site)

4/10/16 CSE 484 [CSE M 584 - Spring 2016

27

C’s rand() Function

* Chas a built-in random function: rand()

unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;

}

/* srand: set seed for rand() */
void srand(unsigned int seed) {

next = seed;

}

* Problem: don’t use rand() for security-critical applications!
— Given a few sample outputs, you can predict subsequent ones

4/10/16 CSE 484 [CSE M 584 - Spring 2016 28
pring

Problems in Practice

* One institution used gsomething like) rand() to
generate passwords for new users

— Given your password, you could predict the passwords
of other users

» Kerberos (1988 -1996)
— Random number generator improperly seeded

— Possible to trivially break into machines that rely upon
Kerberos for authentication

* Online gambling websites
— Random numbers to shuffle cards
— Real money at stake
— But what if poor choice of random numbers?

4/10/16 CSE 484 [CSE M 584 - Spring 2016
g

29

&% A World of Action!

Options
Sit Out

Leave

4/10/16 CSE 484 [CSE M 584 - Spring 2016 30

#= PokerGUI

Site Parameters

Cancel Game Parameters
Hour Dffset I 4 Flop Niin Plagers E_——-:']
Minute Offset I 1 , 0
g & 4 % . 1 26 ?I. '?.;f' Your Position |1 vl
5 d Offset I 52 &
s -}*4-* . 4 + .P.;, Your Cards IBC I.Jh
o ¢ > S H L
Shuffle Button | b b L Flop J's [3c [2d
Time |1B:21:4EI Show Cards
Foo| fow| Foo| Fowo| Fob| PO | Fob | FoD | 3 1 2
3ee | [bve | Bea
oo || Zoa || lis |
o |
T N - Qo 7 a
sot| | aay ’
I | | | Player3 | Player2 | YOU

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

4/10/16 CSE 484 [CSE M 584 - Spring 2016

31

&% A World of Action!

Options
Sit Out

Leave

4/10/16 CSE 484 [CSE M 584 - Spring 2016 32

PS3 and Randomness

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

* 2010/2011: Hackers found/released private root key for Sony’s PS3

* Key used to sign software — now can load any software on PS3
and it will execute as “trusted”

* Due to bad random number: same “random” value used to sign
all system updates

4/10/16 CSE 484 [CSE M 584 - Spring 2016 33

PS3 and Randomness

* Example Current Event report from a past
iteration of 484

— https://catalyst.uw.edu/gopost/conversation/kohno/
452868

4/10/16 CSE 484 [CSE M 584 - Spring 2016 34

Quote

PS3 Exploit

Today, January 3rd, George “Geohot” Hotz found and released the private root key for Sony’s
Playstation 3 (PS3) video game console (http://www.geohot.com/). What this means is that homebrew
software enthusiasts, scientists, and software pirates can now load arbitrary software on the PS3 and
sign it using this key, and the system will execute it as trusted code. Legitimately, this allows Linux and
other operating systems to take advantage of the PS3's cell processor architecture; however, it also
opens up avenues of software piracy previously impossible on Sony's system without requiring any
hardware modifications to the system (previous access of this kind required a USB hardware dongle)

How it Was Done

This was enabled by a cryptographic error by Sony developers in their update process. In the DSA
signature algorithm, a number k is chosen from a supposedly random source for each signed message.
So long as the numbers are unique, the system is secure, but duplicating a random number between
messages can expose the private key to an untrusted party using simple mathematics
(http://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/). Sony used the exact same
“random value” k for all updates pushed to the system, making the signature scheme worthless.

The Most Secure

After Sony removed the “other OS” functionality of the PS3, greater scrutiny was placed on the PS3.
Since it's release in 2006, the Playstation 3 was considered the most secure of the three major video
game consoles, as it was the only console without a “root” compromise in the four years since release
(there were vulnerabilities limited to specific firmware or that required specialized hardware, but nothing
that provided unfettered access). By comparison, Microsoft's Xbox 360 was cracked over 4 years ago
(http://www.theregister.co.uk/2007/03/01/xbox_hack), and the Wii was cracked over 2 years ago

(http://wiibrew.org/wiki/Index.php).

Cullen Walsh
Mark Jordan
Peter Lipay

Other Problems

* Key generation

— Ubuntu removed the randomness from SSL, creating
vulnerable keys for thousands of users/servers

— Undetected for 2 years (2006-2008)

* Live CDs, diskless clients
— May boot up in same state every time

* Virtual Machines

— Save state: Opportunity for attacker to inspect the
pseudorandom number generator’s state

— Restart: May use same “psuedorandom” value more
than once

4/10/16 CSE 484 [CSE M 584 - Spring 2016
pring

36

DILBERT By Scort Apawms

TOUR OF ACCOUNTING |§ | Ane
2 NINE NINE il You
% :
OVER HERE : NINE NINE 3| URE
WE HAVE OUR 3 NINE NINE I ThaaTe
RANDOM NUMBER |} £l CANDOM?
GENERATOR. $
: - N
15 =
£ :
5)

THATS THE
PROBLEM

WITH RAN-
DOMNESS:
YOU CAN

NEVER BE
SURE.

int get RandomNumber()

return Y. // chosen by fair dice roll.
/| Quaranteed to be random.

https://xkcd.com/221/

4/10/16 CSE 484 [CSE M 584 - Spring 2016

37

Obtaining Pseudorandom Numbers

* For security applications, want “cryptographically
secure pseudorandom numbers”

* Libraries include cryptographically secure
pseudorandom number generators

* Linux:
— /dev/random

— [dev/urandom - nonblocking, possibly less entropy

* Internally:
— Entropy pool gathered from multiple sources

4/10/16 CSE 484 [CSE M 584 - Spring 2016 38
g

Where do (good) random
numbers come from?

* Humans: keyboard, mouse input

* Timing: interrupt firing, arrival of packets on
the network interface

* Physical processes: unpredictable physical
phenomena

4/10/16 CSE 484 [CSE M 584 - Spring 2016

39

