
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Mobile	Platform	Security	

[continued]	

Spring	2016	
	

Franziska	(Franzi)	Roesner		
franzi@cs.washington.edu	

Thanks	to	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	Manferdelli,	John	
Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	slides	and	materials	...	



Admin	

•  Office	hours:	Wed	1:30	(not	today)	

•  Lab	3	is	out	(due	June	3,	8pm)	
–  Android	security	
–  3	parts	(+1	extra	credit)	
–  You	should	not	need	to	write	a	lot	of	code	
–  Don’t	procrastinate	on	getting	an	Android	development	

environment	set	up!	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 2	



Challenges	with	Isolated	Apps	

So	mobile	platforms	isolate	applications	for	
security,	but…	

1.  Permissions:	How	can	applications	access	
sensitive	resources?	

2.  Communication:	How	can	applications	
communicate	with	each	other?	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 3	



State	of	the	Art	
Prompts	(time-of-use)	 Manifests	(install-time)	

Out	of	context;	not	
understood	by	users.	

In	practice,	both	are	overly	permissive:		
Once	granted	permissions,	apps	can	misuse	them.	

Disruptive,	which	leads	to	
prompt-fatigue.	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 4	



Android	6.0:	Prompts!	

•  First-use	prompts	for	sensitive	permission	(like	iOS).	
•  Big	change!	Now	app	developers	need	to	check	for	

permissions	or	catch	exceptions.	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 5	



Improving	Permissions:	AppFence	
[Hornyack	et	al.]	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 6	



Let this applica,on 
access my loca,on now.


Insight:

A user’s natural UI ac,ons within 
an applica,on implicitly carry 
permission-gran,ng seman,cs. 


5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 7	

Improving	Permissions:	
User-Driven	Access	Control	

[our	work]	



Let this applica,on 
access my loca,on now.


Insight:

A user’s natural UI ac,ons within 
an applica,on implicitly carry 
permission-gran,ng seman,cs. 


5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 8	

Our study shows: 

Many users already believe (52% of 186) 

– and/or desire (68%) – that resource access 
follows the user-driven access control model.


Improving	Permissions:	
User-Driven	Access	Control	

[our	work]	



New	OS	Primitive:		
Access	Control	Gadgets	(ACGs)	

Approach:	Make	resource-related	UI	elements	first-class	
operating	system	objects	(access	control	gadgets).	
	

•  To	receive	resource	access,	applications	must	embed	a	
system-provided	ACG.	

•  ACGs	allow	the	OS	to	capture	the	user’s	permission	
granting	intent	in	application-agnostic	way.	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 9	



Challenges	with	Isolated	Apps	

So	mobile	platforms	isolate	applications	for	
security,	but…	

1.  Permissions:	How	can	applications	access	
sensitive	resources?	

2.  Communication:	How	can	applications	
communicate	with	each	other?	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 10	



Reminder:	Android	Applications	

•  Activities	provide	user	interfaces.	
•  Services	run	in	the	background.	
•  BroadcastReceivers	receive	messages	sent	to	

multiple	applications	(e.g.,	BOOT_COMPLETED).	
•  ContentProviders	are	databases	addressable	by	

their	application-defined	URIs.	

•  AndroidManifest.xml	
–  Specifies	application	components	
–  Specifies	required	permissions	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 11	



(2)	Inter-Process	Communication	

•  Primary	mechanism	in	Android:	Intents	
– Sent	between	application	components	
•  e.g.,	with	startActivity(intent)

– Explicit:	specify	component	name	
•  e.g.,	com.example.testApp.MainActivity	

–  Implicit:	specify	action	(e.g.,	ACTION_VIEW)	and/
or	data	(URI	and	MIME	type)	
•  Apps	specify	Intent	Filters	for	their	components.	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 12	



Unauthorized	Intent	Receipt	

•  Attack	#1:	Eavesdropping	/	Broadcast	Thefts	
–  Implicit	intents	make	intra-app	messages	public.	

•  Attack	#2:	Activity	Hijacking	
– May	not	always	work:	

•  Attack	#3:	Service	Hijacking	
–  Android	picks	one	at	random		 	 	 	 	 	 													

upon	conflict!	

[Chin	et	al.]	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 13	



Intent	Spoofing	

•  Attack	#1:	General	intent	spoofing	
–  Receiving	implicit	intents	makes	component	public.	
–  Allows	data	injection.	

•  Attack	#2:	System	intent	spoofing	
–  Can’t	directly	spoof,	but	victim	apps	often	don’t	check	

specific	“action”	in	intent.	

[Chin	et	al.]	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 14	



Permission	Re-Delegation	

•  An	application	without	a	permission	gains	
additional	privileges	through	another	application.	

•  Demo	video	
•  Settings	application	is																					 	 	 	 	 	 			

deputy:	has	permissions,	 	 	 	 	 	 											
and	accidentally	exposes																																													
APIs	that	use	those																			 	 	 							
permissions.	

API 

Settings 

Demo 
malware 

toggleWifi()	

pressButton(0)	

Permission System 

toggleWifi()	

[Felt	et	al.]	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 15	



Aside:	Incomplete	Isolation	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 16	

Embedded	UIs	and	libraries	always	run	with	the	host	
application’s	permissions!	(No	same-origin	policy	here…)	

[Shekhar	et	al.]	

Like	us	on		
Facebook!	

Ad	from		
ad	library	
	
	

Social	button	
from	Facebook	
library	

Map	from	
Google	
library	



More	on	Android…	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 17	



Android	Application	Signing	

•  Apps	are	signed	
–  Often	with	self-signed	certificates	
–  Signed	application	certificate	defines	which	user	ID	is	

associated	with	which	applications	
–  Different	apps	run	under	different	UIDs	

•  Shared	UID	feature	
–  Shared	Application	Sandbox	possible,	where	two	or	

more	apps	signed	with	same	developer	key	can	declare	a	
shared	UID	in	their	manifest	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 18	



Shared	UIDs	

•  App	1:		Requests	GPS	/	camera	access	
•  App	2:		Requests	Network	capabilities	

•  Generally:	
–  First	app	can’t	exfiltrate	information	
–  Second	app	can’t	exfiltrate	anything	interesting	

•  With	Shared	UIDs	(signed	with	same	private	key)	
–  Permissions	are	a	superset	of	permissions	for	each	app	
–  App	1	can	now	exfiltrate;	App	2	can	now	access	GPS	/	

camera	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 19	



File	Permissions	

•  Files	written	by	one	application	cannot	be	
read	by	other	applications	
–  Previously,	this	wasn’t	true	for	files	stored	on	the	SD	

card	(world	readable!)	–	Android	cracked	down	on	this	

•  It	is	possible	to	do	full	file	system	encryption	
–  Key	=	Password/PIN	combined	with	salt,	hashed	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 20	



Memory	Management	

•  Address	Space	Layout	Randomization	to	
randomize	addresses	on	stack	

•  Hardware-based	No	eXecute	(NX)	to	prevent	code	
execution	on	stack/heap	

•  Stack	guard	derivative	
•  Some	defenses	against	double	free	bugs	(based	on	

OpenBSD’s	dmalloc()	function)	
•  etc.	

[See	http://source.android.com/tech/security/index.html]	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 21	



Android	Fragmentation	

•  Many	different	variants	of	
Android	(unlike	iOS)	
– Motorola,	HTC,	Samsung,	…	

•  Less	secure	ecosystem	
–  Inconsistent	or	incorrect	

implementations	
–  Slow	to	propagate	kernel	

updates	and	new	versions	
	

[https://developer.android.com/about/
dashboards/index.html]		

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 22	



What	about	iOS?	

•  Apps	are	sandboxed	
•  Encrypted	user	data	
–  See	recent	news…	

•  App	Store	review	process	is	
(maybe)	stricter	
–  But	not	infallible:	e.g.,	see	

Wang	et	al.	“Jekyll	on	iOS:	
When	Benign	Apps	Become	
Evil”	(USENIX	Security	2013)	

5/23/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 23	

•  No	“sideloading”	apps	
–  Unless	you	jailbreak	


