
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Web	Security:	

Basic	Web	Security	Model	[continued]	

Spring	2016	
	

Franziska	(Franzi)	Roesner		
franzi@cs.washington.edu	

Thanks	to	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	Manferdelli,	John	
Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	slides	and	materials	...	



Reminder:	2	Sides	of	Web	Security	

•  Web	browser	
– Responsible	for	securely	confining	Web	content	
presented	by	visited	websites	

•  Web	applications	
– Online	merchants,	banks,	blogs,	Google	Apps	…	
– Mix	of	server-side	and	client-side	code	

•  Server-side	code	written	in	PHP,	Ruby,	ASP,	JSP…	runs	on	
the	Web	server	

•  Client-side	code	written	in	JavaScript…	runs	in	the	Web	
browser	

– Many	potential	bugs:	XSS,	XSRF,	SQL	injection	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 2	



Reminder:	Browser	Sandbox	

•  Goal:	safely	execute	JavaScript																																
code	provided	by	a	website	
–  No	direct	file	access,	limited	access	to	OS,	network,	

browser	data,	content	that	came	from	other	websites	

•  Same	origin	policy	
–  Can	only	access	properties	of	documents	and	windows	

from	the	same	domain,	protocol,	and	port	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 3	



Recap:	Same-Origin	Policy	

•  Goal:	ensure	that	sites	from	different	origins	
can’t	interfere	with	each	other:	
– DOM	manipulation	
– Window	navigation	
– Cookies	(reading	and	writing)	
– Cross-site	content	

•  Implemented	in	various	places	by	the	
browser	–	some	inconsistencies!	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 4	



Cross-Origin	Communication?	

•  Websites	can	embed	scripts,	images,	etc.	from	
other	origins.	

•  But:	AJAX	requests	(aka	XMLHttpRequests)	are		
not	allowed	across	origins.	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 5	

On	example.com:	
	
<script>
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = handleStateChange; // Elsewhere 
xhr.open("GET", “https://bank.com/account_info”, true); 
xhr.send();
</script>
	



Cross-Origin	Communication?	

•  Websites	can	embed	scripts,	images,	etc.	from	
other	origins.	

•  But:	AJAX	requests	(aka	XMLHttpRequests)	are		
not	allowed	across	origins.	

•  Why	not?	
•  Browser	automatically	includes	cookies	with	requests	

(i.e.,	user	credentials	are	sent)	
•  Caller	can	read	returned	data	(clear	SOP	violation)	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 6	



Allowing	Cross-Origin	Communication	

•  Domain	relaxation	
–  If	two	frames	each	set	document.domain	to	the	same	value,	

then	they	can	communicate	
•  E.g.	www.facebook.com,	facebook.com,	and	chat.facebook.com	
•  Must	be	a	suffix	of	the	actual	domain	

•  Access-Control-Allow-Origin:	<list	of	domains>	
–  Specifies	one	or	more	domains	that	may	access	DOM	
–  Typical	usage:	Access-Control-Allow-Origin:	*	

•  HTML5	postMessage	
–  Lets	frames	send	messages	to	each	other	in	controlled	fashion	
–  Unfortunately,	many	bugs	in	how	frames	check	sender’s	origin	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 7	



What	about	Browser	Plugins?	

•  Examples:	Flash,	Silverlight,	Java,	PDF	reader	
•  Goal:	enable	functionality	that	requires	transcending	

the	browser	sandbox	
•  Increases	browser’s	attack	surface	

•  Good	news:	plugin	sandboxing	improving,	and	need	for	
plugins	decreasing	(due	to	HTML5	and	extensions)	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 8	



What	about	Browser	Extensions?	

•  Most	things	you	use	today	are	probably	extensions	
•  Examples:	AdBlock,	Ghostery,	Mailvelope	
•  Goal:	Extend	the	functionality	of	the	browser	

•  	(Chrome:)	Carefully	designed	security	model	to	
protect	from	malicious	websites	
–  Privilege	separation:	extensions	consist	of	multiple	

components	with	well-defined	communication	
–  Least	privilege:	extensions	request	permissions	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 9	



What	about	Browser	Extensions?	

•  But	be	wary	of	malicious	extensions:	not	subject	to	the	
same-origin	policy	–	can	inject	code	into	any	webpage!	

5/2/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 10	


