
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Crypto	meets	Web	Security:	
Certificates	and	SSL/TLS	

Spring	2016	
	

Franziska	(Franzi)	Roesner		
franzi@cs.washington.edu	

Thanks	to	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	Manferdelli,	John	
Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	slides	and	materials	...	



Authenticity	of	Public	Keys	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 2	

?	

Problem:	How	does	Alice	know	that	the	public	key	
																			she	received	is	really	Bob’s	public	key?	

private	key	

Alice	
Bob	

public	key	



Threat:	Man-In-The-Middle	(MITM)	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 3	

Google.com	



Distribution	of	Public	Keys	

•  Public	announcement	or	public	directory	
–  Risks:	forgery	and	tampering	

•  Public-key	certificate	
–  Signed	statement	specifying	the	key	and	identity	

•  sigCA(“Bob”,	PKB)	

•  Common	approach:	certificate	authority	(CA)	
–  Single	agency	responsible	for	certifying	public	keys	
–  After	generating	a	private/public	key	pair,	user	proves	

his	identity	and	knowledge	of	the	private	key	to	obtain	
CA’s	certificate	for	the	public	key	(offline)	

–  Every	computer	is	pre-configured	with	CA’s	public	key	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 4	



Trusted	Certificate	Authorities	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 5	



Hierarchical	Approach	

•  Single	CA	certifying	every	public	key	is	impractical	
•  Instead,	use	a	trusted	root	authority	

–  For	example,	Verisign	
–  Everybody	must	know	the	public	key	for	verifying	root	

authority’s	signatures	
•  Root	authority	signs	certificates	for	lower-level	

authorities,	lower-level	authorities	sign	certificates	
for	individual	networks,	and	so	on	
–  Instead	of	a	single	certificate,	use	a	certificate	chain	

•  sigVerisign(“AnotherCA”,	PKAnotherCA),	sigAnotherCA(“Alice”,	PKA)	

– What	happens	if	root	authority	is	ever	compromised?	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 6	



You	encounter	this	every	day…	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 7	

SSL/TLS:	Encryption	&	authentication	for	connections	
	
(More	on	this	later!)	



Example	of	a	Certificate	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 8	



X.509	Certificate	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 9	



Many	Challenges…		
[more	examples	in	section]	

•  Hash	collisions	
•  Weak	security	at	CAs	
– Allows	attackers	to	issue	rogue	certificates	

•  Users	don’t	notice	when	attacks	happen	
– We’ll	talk	more	about	this	later	

•  Etc…	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 10	



Colliding	Certificates	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 11	

serial	number	

validity	period	

real	cert	
domain	name	

real	cert	
RSA	key	

X.509	extensions	

signature	
identical	bytes	

(copied	from	real	cert)	

collision	bits	
(computed)	

chosen	prefix	
(difference)	

serial	number	

validity	period	

rogue	cert	
domain	name	

???	

X.509	extensions	

signature	

set	by	
the	CA	

Hash	to	the	same	
MD5	value!	

Valid	for	both	certificates!	

[Sotirov	et	al.	“Rogue	Certificates”]	



4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 12	

Attacking	CAs	
	
Security	of	DigiNotar	
servers:	
•  All	core	certificate	

servers	controlled	by	
a	single	admin	
password	
(Pr0d@dm1n)	

•  Software	on	public-
facing	servers	out	of	
date,	unpatched	

•  No	anti-virus	(could	
have	detected	attack)	

	



Consequences	

•  Attacker	needs	to	first	divert	users	to	an	attacker-
controlled	site	instead	of	Google,	Yahoo,	Skype,	
but	then…	
–  For	example,	use	DNS	to	poison	the	mapping	of	

mail.yahoo.com	to	an	IP	address	

•  …	“authenticate”	as	the	real	site	
•  …	decrypt	all	data	sent	by	users	

–  Email,	phone	conversations,	Web	browsing	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 13	



More	Rogue	Certs	

•  In	Jan	2013,	a	rogue	*.google.com	certificate																	
was	issued	by	an	intermediate	CA	that	gained																		
its	authority	from	the	Turkish	root	CA	TurkTrust	
–  TurkTrust	accidentally	issued	intermediate	CA	certs		to	

customers	who	requested	regular	certificates	
–  Ankara	transit	authority	used	its	certificate	to	issue	a	fake	

*.google.com	certificate	in	order	to	filter	SSL	traffic	from	its	
network	

•  This	rogue	*.google.com	certificate	was	trusted	by	
every	browser	in	the	world	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 14	



Certificate	Revocation	

•  Revocation	is	very	important	
•  Many	valid	reasons	to	revoke	a	certificate	

–  Private	key	corresponding	to	the	certified	public	key	has	
been	compromised	

–  User	stopped	paying	his	certification	fee	to	this	CA	and	
CA	no	longer	wishes	to	certify	him	

–  CA’s	private	key	has	been	compromised!	
•  Expiration	is	a	form	of	revocation,	too	

– Many	deployed	systems	don’t	bother	with	revocation	
–  Re-issuance	of	certificates	is	a	big	revenue	source	for	

certificate	authorities	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 15	



Certificate	Revocation	Mechanisms	

•  Certificate	revocation	list	(CRL)	
–  CA	periodically	issues	a	signed	list	of	revoked	
certificates	
•  Credit	card	companies	used	to	issue	thick	books	of	
canceled	credit	card	numbers	

–  Can	issue	a	“delta	CRL”	containing	only	updates	
•  Online	revocation	service	
– When	a	certificate	is	presented,	recipient	goes	to	a	
special	online	service	to	verify	whether	it	is	still	valid	
•  Like	a	merchant	dialing	up	the	credit	card	processor	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 16	



Attempt	to	Fix	CA	Problems:	Convergence	

•  Background	observation:	
–  Attacker	will	have	a	hard	time	mounting	man-in-the-

middle	attacks	against	all	clients	around	the	world	

•  Basic	idea:	
–  Lots	of	nodes	around	the	world	obtaining	SSL/TLS	

certificates	from	servers	
–  Check	responses	across	servers,	and	also	observe	

unexpected	changes	from	existing	certificates	
	

http://convergence.io/		

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 17	



Keybase	

•  Basic	idea:	
–  Rely	on	existing	trust	of	a	person’s	ownership	of	other	

accounts	(e.g.,	Twitter,	GitHub,	website)	
–  Each	user	publishes	signed	proofs	to	their	linked	account	

	

																																																																https://keybase.io/		

	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 18	



SSL/TLS	

•  Secure	Sockets	Layer	and	Transport	Layer	Security	
protocols	
–  Same	protocol	design,	different	crypto	algorithms	

•  De	facto	standard	for	Internet	security	
–  “The	primary	goal	of	the	TLS	protocol	is	to	provide	

privacy	and	data	integrity	between	two	communicating	
applications”	

•  Deployed	in	every	Web	browser;	also	VoIP,	
payment	systems,	distributed	systems,	etc.	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 19	



TLS	Basics	

•  TLS	consists	of	two	protocols	
–  Familiar	pattern	for	key	exchange	protocols	

•  Handshake	protocol	
– Use	public-key	cryptography	to	establish	a	shared	
secret	key	between	the	client	and	the	server	

•  Record	protocol	
– Use	the	secret	symmetric	key	established	in	the	
handshake	protocol	to	protect	communication	
between	the	client	and	the	server	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 20	



Basic	Handshake	Protocol	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 21	

C	

ClientHello	

S	

Client	announces	(in	plaintext):	
•  Protocol	version	it	is	running	
•  Cryptographic	algorithms	it	supports	
•  Fresh,	random	number	



Basic	Handshake	Protocol	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 22	

C	

C,	versionc,	suitesc,	Nc	

ServerHello	

S	
Server	responds	(in	plaintext)	with:	
•  Highest	protocol	version	supported	by	

both	the	client	and	the	server	
•  Strongest	cryptographic	suite	selected	

from	those	offered	by	the	client	
•  Fresh,	random	number	



Basic	Handshake	Protocol	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 23	

C	

versions,	suites,	Ns,	
ServerKeyExchange	

S	Server	sends	his	public-key	certificate	
containing	either	his	RSA,	or	
his	Diffie-Hellman	public	key		
(depending	on	chosen	crypto	suite)	

C,	versionc,	suitesc,	Nc	



Basic	Handshake	Protocol	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 24	

C	

versions,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc,	suitesc,	Nc	

ClientKeyExchange	

The	client	generates	secret	key	material	
and	sends	it	to	the	server	encrypted	with	
the	server’s	public	key	(if	using	RSA)	



Basic	Handshake	Protocol	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 25	

C	

versions,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

C	and	S	share	
secret	key	material	(secretc)	at	this	point	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

Finished	Finished	

Record	of	all	sent	and		
received	handshake	messages	



“Core”	SSL	3.0	Handshake	(Not	TLS)	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 26	

C	

versions=3.0,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc=3.0,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

C	and	S	share	
secret	key	material	(secretc)	at	this	point	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

Finished	Finished	



Version	Rollback	Attack	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 27	

C	

Versions=2.0,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc=2.0,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

C	and	S	end	up	communicating	using	SSL	2.0		
(weaker	earlier	version	of	the	protocol	that	

does	not	include	“Finished”	messages)	

Server	is	fooled	into	thinking	he	is	
communicating	with	a	client	who	
supports	only	SSL	2.0	



“Chosen-Protocol”	Attacks	

•  Why	do	people	release	new	versions	of	security	protocols?	
Because	the	old	version	got	broken!	

•  New	version	must	be	backward-compatible	
–  Not	everybody	upgrades	right	away	

•  Attacker	can	fool	someone	into	using	the	old,	broken	version	
and	exploit	known	vulnerability	
–  Similar:	fool	victim	into	using	weak	crypto	algorithms	

•  Defense	is	hard:	must	authenticate	version	in	early	designs	
•  Many	protocols	had	“version	rollback”	attacks	

–  SSL,	SSH,	GSM	(cell	phones)	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 28	



Version	Check	in	SSL	3.0	

4/27/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 29	

C	

versions=3.0,	suites,	Ns,	
certificate	for	PKs,	
“ServerHelloDone”	

S	

C,	versionc=3.0,	suitesc,	Nc	

{versionc,	secretc}PKs	

C	and	S	share	
secret	key	material	secretc	at	this	point	

“Embed”	version	
number	into	secret	

Check	that	received	version	is	equal	
to	the	version	in	ClientHello		

switch	to	key	derived	
from	secretc,	Nc,	Ns	

switch	to	key	derived	
from	secretc,	Nc,	Ns	


