CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography: Asymmetric Cryptography (finish)

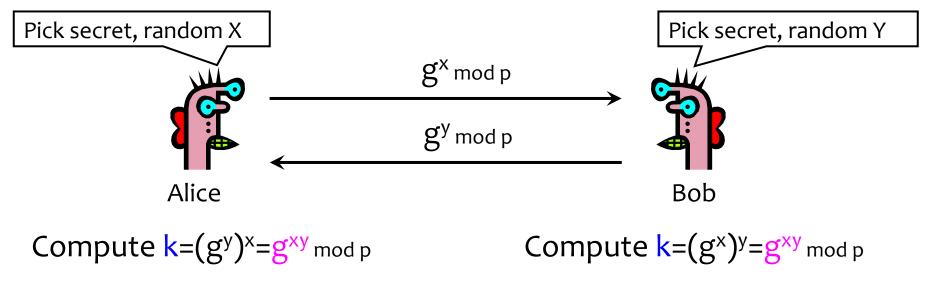
Spring 2016

Franziska (Franzi) Roesner franzi@cs.washington.edu

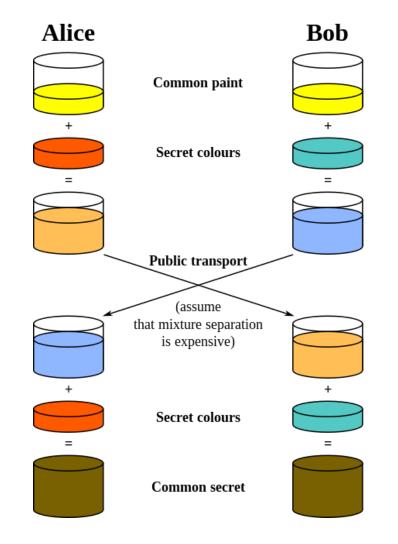
Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- <u>Public</u> info: p and g
 - p is a large prime number, g is a generator of Z_p^*
 - Z_p *={1, 2 ... p-1}; $\forall a \in Z_p$ * $\exists i \text{ such that } a=g^i \mod p$
 - Modular arithmetic: numbers "wrap around" after they reach p



Diffie-Hellman: Conceptually



Common paint: p and g

Secret colors: x and y

Send over public transport: g^x mod p g^y mod p

Common secret: g^{xy} mod p

[from Wikipedia]

Why is Diffie-Hellman Secure?

- Discrete Logarithm (DL) problem: given g^x mod p, it's hard to extract x
 - There is no known <u>efficient</u> algorithm for doing this
 - This is <u>not</u> enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem: given g^x and g^y, it's hard to compute g^{xy} mod p
 - … unless you know x or y, in which case it's easy
- Decisional Diffie-Hellman (DDH) problem: given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

Properties of Diffie-Hellman

- Assuming DDH problem is hard (depends on choice of parameters!), Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between the established key and a random value
 - Can use the new key for symmetric cryptography
- Diffie-Hellman protocol (by itself) does not provide authentication

Requirements for Public Key Encryption

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to learn anything about M from C without SK
 - Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

- Euler totient function φ(n) (n≥1) is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
 - Easy to compute for primes: $\varphi(p) = p-1$
 - Note that $\varphi(ab) = \varphi(a) \varphi(b)$

Some Number Theory Facts

- Euler totient function φ(n) (n≥1) is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
 - Easy to compute for primes: $\varphi(p) = p-1$
 - Note that $\varphi(ab) = \varphi(a) \varphi(b)$
- Euler's theorem: if $a \in Z_n^*$, then $a^{\varphi(n)}=1 \mod n$ Z_n^* : integers relatively prime to n

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

• Key generation:

- Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
- Compute **n**=pq and φ(**n**)=(p-1)(q-1)
- Choose small e, relatively prime to $\varphi(n)$
 - Typically, e=3 or e=2¹⁶+1=65537
- Compute unique d such that $ed = 1 \mod \varphi(n)$
 - Modular inverse: $d = e^{-1} \mod \varphi(n)$
- Public key = (e,n); private key = (d,n)
- Encryption of m: c = m^e mod n
- Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$

Why RSA Decryption Works

e·d=1 mod $\varphi(n)$, thus e·d=1+k· $\varphi(n)$ for some k

Let m be any integer in Z_n^* (not all of Z_n) $c^d \mod n = (m^e)^d \mod n = m^{1+k \cdot \varphi(n)} \mod n$ $= (m \mod n)^* (m^{k \cdot \varphi(n)} \mod n)$

Recall: Euler's theorem: if $a \in Z_n^*$, then $a^{\varphi(n)}=1 \mod n$ $c^{d} \mod n = (m \mod n) * (1 \mod n)$ $= m \mod n$

Proof omitted: True for all m in Z_n, not just m in Z_n*

Why is RSA Secure?

- RSA problem: given c, n=pq, and e such that gcd(e, φ(n))=1, find m such that m^e=c mod n
 - In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c modulo n
 - There is no known efficient algorithm for doing this
- Factoring problem: given positive integer n, find primes
 p₁, ..., p_k such that n=p₁^{e₁}p₂<sup>e₂</sub>... p_k<sup>e_k
 </sup></sup>
- If factoring is easy, then RSA problem is easy (knowing factors means you can compute d = inverse of e mod (p-1)(q-1))
 - It may be possible to break RSA without factoring n -- but if it is, we don't know how

RSA Encryption Caveats

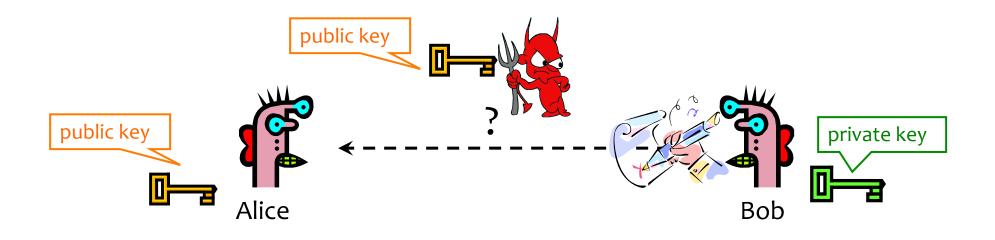
- Encrypted message needs to be interpreted as an integer less than n
- Don't use RSA directly for privacy output is deterministic! Need to pre-process input somehow
- Plain RSA also does <u>not</u> provide integrity

Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt $M \oplus G(r)$; $r \oplus H(M \oplus G(r))$

r is random and fresh, G and H are hash functions

Digital Signatures: Basic Idea



<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

Goal: Bob sends a "digitally signed" message

- 1. To compute a signature, must know the private key
- 2. To verify a signature, only the public key is needed

RSA Signatures

- Public key is (n,e), private key is (n,d)
- To sign message m: s = m^d mod n
 - Signing & decryption are same **underlying** operation in RSA
 - It's infeasible to compute s on m if you don't know d
- To verify signature s on message m: verify that s^e mod n = (m^d)^e mod n = m
 - Just like encryption (for RSA primitive)
 - Anyone who knows n and e (public key) can verify signatures produced with d (private key)
- In practice, also need padding & hashing
 - Standard padding/hashing schemes exist for RSA signatures

DSS Signatures

- Digital Signature Standard (DSS)
 U.S. government standard (1991, most recent rev. 2013)
- Public key: (p, q, g, y=g^x mod p), private key: x
- Security of DSS requires hardness of discrete log
 - If could solve discrete logarithm problem, would extract x (private key) from g^x mod p (public key)

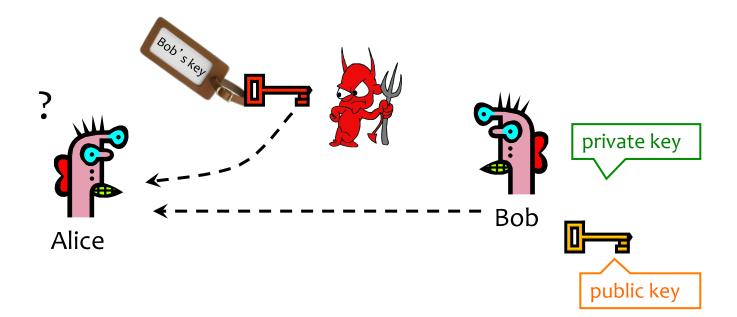
Advantages of Public Key Crypto

- Confidentiality without shared secrets
 - Very useful in open environments
 - Can use this for key establishment, with fewer "chickenor-egg" problems
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
- Authentication without shared secrets
 - Use digital signatures to prove the origin of messages
- Encryption keys are public, but must be sure that Alice's public key is really *her* public key
 - This is a hard problem...

Disadvantages of Public Key Crypto

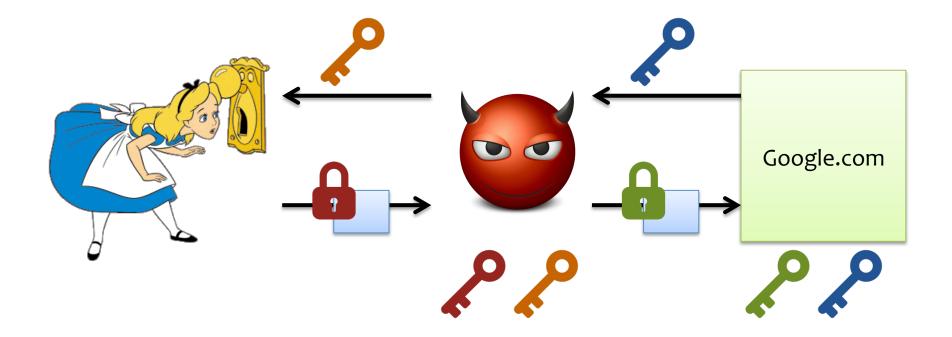
- Calculations are 2-3 orders of magnitude slower
 - Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - E.g., IPsec, SSL, SSH, ...
- Keys are longer
 - 1024+ bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - What if factoring is easy?
 - Factoring is believed to be neither P, nor NP-complete
 - (Of course, symmetric crypto also rests on unproven assumptions...)

Authenticity of Public Keys



<u>Problem</u>: How does Alice know that the public key she received is really Bob's public key?

Threat: Man-In-The-Middle (MITM)



Distribution of Public Keys

- Public announcement or public directory
 - Risks: forgery and tampering
- Public-key certificate
 - Signed statement specifying the key and identity
 - sig_{CA}("Bob", PK_B)
- Common approach: certificate authority (CA)
 - Single agency responsible for certifying public keys
 - After generating a private/public key pair, user proves his identity and knowledge of the private key to obtain CA's certificate for the public key (offline)
 - Every computer is <u>pre-configured</u> with CA's public key