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Cryptography:		

Asymmetric	Cryptography	(finish)	



Diffie-Hellman	Protocol	(1976)		
•  Alice	and	Bob	never	met	and	share	no	secrets	
•  Public	info:	p	and	g	

–  p	is	a	large	prime	number,	g	is	a	generator	of	Zp*	
•  Zp*={1,	2	…	p-1};	∀a	∈ Zp*		∃i		such	that	a=gi	mod	p	
•  Modular	arithmetic:	numbers	“wrap	around”	after	they	reach	p	
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Alice	 Bob	

Pick	secret,	random	X	 Pick	secret,	random	Y	

gy	mod	p	

gx	mod	p	

Compute	k=(gy)x=gxy	mod	p	
	

Compute	k=(gx)y=gxy	mod	p	
	



Diffie-Hellman:	Conceptually	
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[from	Wikipedia]	

Common	paint:	p	and	g	
	
Secret	colors:	x	and	y	
	
Send	over	public	transport:		
gx	mod	p	
gy	mod	p	
	
Common	secret:	gxy	mod	p	



Why	is	Diffie-Hellman	Secure?	

•  Discrete	Logarithm	(DL)	problem:		
					given	gx	mod	p,	it’s	hard	to	extract	x	
–  There	is	no	known	efficient	algorithm	for	doing	this	
–  This	is	not	enough	for	Diffie-Hellman	to	be	secure!	

•  Computational	Diffie-Hellman	(CDH)	problem:	
					given	gx	and	gy,	it’s	hard	to	compute	gxy	mod	p	
– …	unless	you	know	x	or	y,	in	which	case	it’s	easy	

•  Decisional	Diffie-Hellman	(DDH)	problem:		
					given	gx	and	gy,	it’s	hard	to	tell	the	difference	between						

gxy	mod	p	and	gr	mod	p	where	r	is	random	
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Properties	of	Diffie-Hellman	

•  Assuming	DDH	problem	is	hard	(depends	on	choice	of	
parameters!),	Diffie-Hellman	protocol	is	a	secure	key	
establishment	protocol	against	passive	attackers	
–  Eavesdropper	can’t	tell	the	difference	between	the	

established	key	and	a	random	value	
–  Can	use	the	new	key	for	symmetric	cryptography	

•  Diffie-Hellman	protocol	(by	itself)	does	not	provide	
authentication	
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Requirements	for	Public	Key	Encryption	

•  Key	generation:	computationally	easy	to	generate	
a	pair	(public	key	PK,	private	key	SK)	

•  Encryption:	given	plaintext	M	and	public	key	PK,	
easy	to	compute	ciphertext	C=EPK(M)	

•  Decryption:	given	ciphertext	C=EPK(M)	and	private	
key	SK,	easy	to	compute	plaintext	M	
–  Infeasible	to	learn	anything	about	M	from	C	without	SK	
–  Trapdoor	function:	Decrypt(SK,Encrypt(PK,M))=M	
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Some	Number	Theory	Facts	

•  Euler	totient	function	ϕ(n)	(n≥1)	is	the	number	of	
integers	in	the	[1,n]	interval	that	are	relatively	prime	to	n	
–  Two	numbers	are	relatively	prime	if	their	greatest	

common	divisor	(gcd)	is	1	
–  Easy	to	compute	for	primes:	ϕ(p)	=	p-1	
–  Note	that	ϕ(ab)	=	ϕ(a)	ϕ(b)	
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Some	Number	Theory	Facts	

•  Euler	totient	function	ϕ(n)	(n≥1)	is	the	number	of	
integers	in	the	[1,n]	interval	that	are	relatively	prime	to	n	
–  Two	numbers	are	relatively	prime	if	their	greatest	

common	divisor	(gcd)	is	1	
–  Easy	to	compute	for	primes:	ϕ(p)	=	p-1	
–  Note	that	ϕ(ab)	=	ϕ(a)	ϕ(b)	

•  Euler’s	theorem:	if	a	∈	Zn*,	then	aϕ(n)=1	mod	n	
				Zn*:	integers	relatively	prime	to	n	
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RSA	Cryptosystem	[Rivest,	Shamir,	Adleman	1977]	

•  Key	generation:	
–  Generate	large	primes	p,	q	

•  Say,	1024	bits	each	(need	primality	testing,	too)	

–  Compute	n=pq	and	ϕ(n)=(p-1)(q-1)	
–  Choose	small	e,	relatively	prime	to	ϕ(n)	

•  Typically,	e=3	or	e=216+1=65537	
–  Compute	unique	d	such	that	ed	=	1	mod	ϕ(n)	

•  Modular	inverse:	d	=	e-1	mod	ϕ(n)	

–  Public	key	=	(e,n);		private	key	=	(d,n)	
•  Encryption	of	m:		c	=	me	mod	n	
•  Decryption	of	c:			cd	mod	n	=	(me)d	mod	n	=	m	
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Why	RSA	Decryption	Works	

e⋅d=1	mod	ϕ(n),	thus	e⋅d=1+k⋅ϕ(n)	for	some	k	
	

Let	m	be	any	integer	in	Zn*	(not	all	of	Zn)	
cd	mod	n	=	(me)d	mod	n		=	m1+k�ϕ(n)	mod	n	
																		=	(m	mod	n)	*	(mk�ϕ(n)	mod	n)	
	

Recall:		Euler’s	theorem:	if	a	∈ Zn*,	then	aϕ(n)=1	mod	n	
	

cd	mod	n	=	(m	mod	n)	*	(1	mod	n)	
																		=	m	mod	n	
	

Proof	omitted:		True	for	all	m	in	Zn,	not	just	m	in	Zn*	
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Why	is	RSA	Secure?	

•  RSA	problem:	given	c,	n=pq,	and	e	such	that												
gcd(e,	ϕ(n))=1,	find	m	such	that	me=c	mod	n	
–  In	other	words,	recover	m	from	ciphertext	c	and	public	key	(n,e)	by	

taking	eth	root	of	c	modulo	n	
–  There	is	no	known	efficient	algorithm	for	doing	this	

•  Factoring	problem:	given	positive	integer	n,	find	primes	
p1,	…,	pk	such	that	n=p1

e1p2
e2…pk

ek	

•  If	factoring	is	easy,	then	RSA	problem	is	easy	(knowing	
factors	means	you	can	compute	d	=	inverse	of	e	mod	(p-1)(q-1))	
–  It	may	be	possible	to	break	RSA	without	factoring	n	--	but	if	it	is,	we	

don’t	know	how	
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RSA	Encryption	Caveats	

•  Encrypted	message	needs	to	be	interpreted	as	an	
integer	less	than	n	

•  Don’t	use	RSA	directly	for	privacy	–	output	is	
deterministic!		Need	to	pre-process	input	somehow	

•  Plain	RSA	also	does	not	provide	integrity	
–  Can	tamper	with	encrypted	messages	

In	practice,	OAEP	is	used:	instead	of	encrypting	M,	
encrypt	M⊕G(r)	;	r⊕H(M⊕G(r))	
–  r	is	random	and	fresh,	G	and	H	are	hash	functions	
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Digital	Signatures:	Basic	Idea	
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?	

Given:	Everybody	knows	Bob’s	public	key	
													Only	Bob	knows	the	corresponding	private	key	

private	key	

Goal:	Bob	sends	a	“digitally	signed”	message	
1.  To	compute	a	signature,	must	know	the	private	key	
2.  To	verify	a	signature,	only	the	public	key	is	needed	

public	key	

public	key	

Alice	 Bob	



RSA	Signatures	

•  Public	key	is	(n,e),	private	key	is	(n,d)	
•  To	sign	message	m:		s	=	md	mod	n	

–  Signing	&	decryption	are	same	underlying	operation	in	RSA	
–  It’s	infeasible	to	compute	s	on	m	if	you	don’t	know	d	

•  To	verify	signature	s	on	message	m:				
				verify	that	se	mod	n	=	(md)e	mod	n	=	m	

–  Just	like	encryption	(for	RSA	primitive)	
–  Anyone	who	knows	n	and	e	(public	key)	can	verify	signatures	

produced	with	d	(private	key)	
•  In	practice,	also	need	padding	&	hashing	

–  Standard	padding/hashing	schemes	exist	for	RSA	signatures	
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DSS	Signatures	

•  Digital	Signature	Standard	(DSS)	
–  U.S.	government	standard	(1991,	most	recent	rev.	2013)	

•  Public	key:	(p,	q,	g,	y=gx	mod	p),	private	key:	x	
•  Security	of	DSS	requires	hardness	of	discrete	log	

–  If	could	solve	discrete	logarithm	problem,	would	extract	
x	(private	key)	from	gx	mod	p	(public	key)	
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Advantages	of	Public	Key	Crypto	
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•  Confidentiality	without	shared	secrets	
–  Very	useful	in	open	environments	
–  Can	use	this	for	key	establishment,	with	fewer	“chicken-

or-egg”	problems	
•  With	symmetric	crypto,	two	parties	must	share	a	secret	before	
they	can	exchange	secret	messages	

•  Authentication	without	shared	secrets	
–  Use	digital	signatures	to	prove	the	origin	of	messages	

•  Encryption	keys	are	public,	but	must	be	sure	that	
Alice’s	public	key	is	really	her	public	key	
–  This	is	a	hard	problem…	



Disadvantages	of	Public	Key	Crypto	

•  Calculations	are	2-3	orders	of	magnitude	slower	
–  Modular	exponentiation	is	an	expensive	computation	
–  Typical	usage:	use	public-key	cryptography	to	establish	a	shared	

secret,	then	switch	to	symmetric	crypto	
•  E.g.,	IPsec,	SSL,	SSH,	...	

•  Keys	are	longer	
–  1024+	bits	(RSA)	rather	than	128	bits	(AES)	

•  Relies	on	unproven	number-theoretic	assumptions	
–  What	if	factoring	is	easy?	

•  Factoring	is	believed	to	be	neither	P,	nor	NP-complete	
–  (Of	course,	symmetric	crypto	also	rests	on	unproven	

assumptions…)	
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Authenticity	of	Public	Keys	
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?	

Problem:	How	does	Alice	know	that	the	public	key	
																			she	received	is	really	Bob’s	public	key?	

private	key	

Alice	
Bob	

public	key	



Threat:	Man-In-The-Middle	(MITM)	
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Google.com	



Distribution	of	Public	Keys	

•  Public	announcement	or	public	directory	
–  Risks:	forgery	and	tampering	

•  Public-key	certificate	
–  Signed	statement	specifying	the	key	and	identity	

•  sigCA(“Bob”,	PKB)	

•  Common	approach:	certificate	authority	(CA)	
–  Single	agency	responsible	for	certifying	public	keys	
–  After	generating	a	private/public	key	pair,	user	proves	

his	identity	and	knowledge	of	the	private	key	to	obtain	
CA’s	certificate	for	the	public	key	(offline)	

–  Every	computer	is	pre-configured	with	CA’s	public	key	
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