
Spring	2016	
	

Franziska	(Franzi)	Roesner		
franzi@cs.washington.edu	

Thanks	to	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	Manferdelli,	John	
Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	slides	and	materials	...	

CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Cryptography:		

Hash	Functions,	MACs	(finish)	
Asymmetric	Cryptography	(start)	



Hash	Functions	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 2	



Hash	Functions:	Main	Idea	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 3	

bit	strings	of	any	length	 n-bit	bit	strings	

.	 .	

.	
.	
.	

x’	
x’’	

x	

y’	
y	

hash	function	H	

•  Hash	function	H	is	a	lossy	compression	function	
– Collision:	h(x)=h(x’)	for	distinct	inputs	x,	x’	

•  H(x)	should	look	“random”	
–  Every	bit	(almost)	equally	likely	to	be	0	or	1	

•  Cryptographic	hash	function	needs	a	few	properties…	

message		
“digest”	

message	



Property	1:	One-Way	

•  Intuition:	hash	should	be	hard	to	invert	
–  “Preimage	resistance”	
–  Let	h(x’)	=	y	∈ {0,1}n	for	a	random	x’		
–  Given	y,	it	should	be	hard	to	find	any	x	such	that	h(x)=y	

•  How	hard?	
–  Brute-force:	try	every	possible	x,	see	if	h(x)=y	
–  SHA-1	(common	hash	function)	has	160-bit	output	

•  Expect	to	try	2159	inputs	before	finding	one	that	hashes	to	y.	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 4	



Property	2:	Collision	Resistance	

•  Should	be	hard	to	find	x≠x’	such	that	h(x)=h(x’)	
•  Birthday	paradox	means	that	brute-force	collision	

search	is	only	O(2n/2),	not	O(2n)	
– For	SHA-1,	this	means	O(280)	vs.	O(2160)	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 5	



One-Way	vs.	Collision	Resistance	

•  One-wayness	does	not	imply	collision	resistance	
–  Suppose	g	is	one-way	
–  Define	h(x)	as	g(x’)	where	x’	is	x	except	the	last	bit	

•  h	is	one-way	(to	invert	h,	must	invert	g)	
•  Collisions	for	h	are	easy	to	find:	for	any	x,	h(x0)=h(x1)	

•  Collision	resistance	does	not	imply	one-wayness	
–  Suppose	g	is	collision-resistant	
–  Define	y=h(x)	to	be	0x	if	x	is	n-bit	long,	1g(x)	otherwise	

•  Collisions	for	h	are	hard	to	find:	if	y	starts	with	0,	then	there	are	
no	collisions,	if	y	starts	with	1,	then	must	find	collisions	in	g	

•  h	is	not	one	way:	half	of	all	y’s	(those	whose	first	bit	is	0)	are	
easy	to	invert	(how?);	random	y	is	invertible	with	probab.	½		

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 6	



Property	3:	Weak	Collision	Resistance	

•  Given	randomly	chosen	x,	hard	to	find	x’	such	that	
h(x)=h(x’)	
–  Attacker	must	find	collision	for	a	specific	x.	By	contrast,	

to	break	collision	resistance	it	is	enough	to	find	any	
collision.	

–  Brute-force	attack	requires	O(2n)	time	

•  Weak	collision	resistance	does	not	imply	collision	
resistance.	

	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 7	



Hashing	vs.	Encryption	

•  Hashing	is	one-way.	There	is	no	“un-hashing”	
–  A	ciphertext	can	be	decrypted	with	a	decryption	key…	

hashes	have	no	equivalent	of	“decryption”	

•  Hash(x)	looks	“random”	but	can	be	compared	for	
equality	with	Hash(x’)	
–  Hash	the	same	input	twice	à	same	hash	value	
–  Encrypt	the	same	input	twice	à	different	ciphertexts	

•  Crytographic	hashes	are	also	known	as	
“cryptographic	checksums”	or	“message	digests”	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 8	



Application:	Password	Hashing	

•  Instead	of	user	password,	store	hash(password)	
•  When	user	enters	a	password,	compute	its	hash	

and	compare	with	the	entry	in	the	password	file	
–  System	does	not	store	actual	passwords!	
–  Cannot	go	from	hash	to	password!	

•  Why	is	hashing	better	than	encryption	here?	
•  Does	hashing	protect	weak,	easily	guessable	

passwords?	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 9	



Application:	Software	Integrity	

Goal:	Software	manufacturer	wants	to	ensure	file	is	received	
by	users	without	modification.		
Idea:	given	goodFile	and	hash(goodFile),	very	hard	to	find	
badFile	such	that	hash(goodFile)=hash(badFile)	
	
4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 10	

goodFile	

BigFirm™	 User	

VIRUS	

badFile	

The	NYTimes	

hash(goodFile)	



Which	Property	Do	We	Need?	

•  UNIX	passwords	stored	as	hash(password)	
–  One-wayness:	hard	to	recover	the/a	valid	password	

•  Integrity	of	software	distribution	
–  Weak	collision	resistance	
–  But	software	images	are	not	really	random…	may	need	full	

collision	resistance	if	considering	malicious	developers	
•  Auction	bidding	

–  Alice	wants	to	bid	B,	sends	H(B),	later	reveals	B	
–  One-wayness:	rival	bidders	should	not	recover	B	(this	may	mean	

that	she	needs	to	hash	some	randomness	with	B	too)	
–  Collision	resistance:	Alice	should	not	be	able	to	change	her	mind	

to	bid	B’	such	that	H(B)=H(B’)	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 11	



Common	Hash	Functions	

•  MD5	
–  128-bit	output	
–  Designed	by	Ron	Rivest,	used	very	widely	
–  Collision-resistance	broken	(summer	of	2004)	

•  RIPEMD-160	
–  160-bit	variant	of	MD5	

•  SHA-1	(Secure	Hash	Algorithm)	
–  160-bit	output	
–  US	government	(NIST)	standard	as	of	1993-95	
–  Also	recently	broken!		(Theoretically	--	not	practical.)	

•  SHA-256,	SHA-512,	SHA-224,	SHA-384	
•  SHA-3:		standard	released	by	NIST	in	August	2015	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 12	



Recall:	Achieving	Integrity	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 15	

Integrity	and	authentication:	only	someone	who	knows	
KEY	can	compute	correct	MAC	for	a	given	message.	

Alice	 Bob	

KEY	KEY	

message	

MAC:	message	authentication	code	
(sometimes	called	a	“tag”)	

message,	MAC(KEY,message)	

=	
?	

Recomputes	MAC	and	verifies	whether	it	is	
equal	to	the	MAC	attached	to	the	message	

Message	authentication	schemes:		A	tool	for	protecting	integrity.	



HMAC	

•  Construct	MAC	from	a	cryptographic	hash	function	
–  Invented	by	Bellare,	Canetti,	and	Krawczyk	(1996)	
–  Used	in	SSL/TLS,	mandatory	for	IPsec	

•  Why	not	encryption?	
–  Hashing	is	faster	than	block	ciphers	in	software	
–  Can	easily	replace	one	hash	function	with	another	
–  There	used	to	be	US	export	restrictions	on	encryption	

	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 16	



Authenticated	Encryption	

•  What	if	we	want	both	privacy	and	integrity?	
•  Natural	approach:	combine	encryption	scheme	and	a	MAC.	
•  But	be	careful!	

–  Obvious	approach:	Encrypt-and-MAC	
–  Problem:	MAC	is	deterministic!	same	plaintext	à	same	MAC	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 18	

M2	

C’2	

EncryptKe	

T2	

MACKm	

M1	

C’1	

EncryptKe	

T1	

M3	

C’3	

EncryptKe	

T3	

DON’T	FIRE	FIRE	 FIRE	FIRE	 FIRE	

MACKm	 MACKm	

T1	 T3	



Authenticated	Encryption	

•  Instead:											
Encrypt	then	MAC.	

•  (Not	as	good:																				
MAC-then-Encrypt)	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 19	

Encrypt-then-MAC	

EncryptKe	

M	

MACKm	C’	

T	C’	
Ciphertext	C	



Asymmetric	(Public	Key)	
Cryptography	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 20	



Reminder:	Symmetric	Cryptography	

•  1	secret	key	(or	2	or	…),	shared	between	sender/receiver	
•  Repeat	fast	and	simple	operations	lots	of	times	(rounds)	to	

mix	up	key	and	ciphertext	
•  Why	do	we	think	it	is	secure?	(simplistic)	

–  Lots	of	heuristic	arguments	
•  If	we	do	lots	and	lots	and	lots	of	mixing,	no	simple	formula	

(and	reversible)	describing	the	whole	process	(cryptographic	
weakness).	

•  Mix	in	ways	we	think	it’s	hard	to	short-circuit	all	the	rounds.	
Especially	non-linear	mixing,	e.g.,	S-boxes.	

–  Some	math	gives	us	confidence	in	these	assumptions	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 21	



Public	Key	Crypto:	Basic	Problem	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 22	

?	

Given:	Everybody	knows	Bob�s	public	key	
													Only	Bob	knows	the	corresponding	private	key	

private	key	

Goals:	1.	Alice	wants	to	send	a	secret	message	to	Bob	
													2.	Bob	wants	to	authenticate	himself	

public	key	

public	key	

Alice	
Bob	



Public	Key	Cryptography	

•  Everyone	has	1	private	key	and	1	public	key	
– Or	2	private	and	2	public,	when	considering	both	
encryption	and	authentication	

•  Mathematical	relationship	between	private	and	
public	keys	

•  Why	do	we	think	it	is	secure?	(simplistic)	
–  Relies	entirely	on	problems	we	believe	are	“hard”	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 23	



Applications	of	Public	Key	Crypto	

•  Encryption	for	confidentiality	
–  Anyone	can	encrypt	a	message	

•  With	symmetric	crypto,	must	know	secret	key	to	encrypt	

–  Only	someone	who	knows	private	key	can	decrypt	
–  Key	management	is	simpler	(or	at	least	different)	

•  Secret	is	stored	only	at	one	site:	good	for	open	environments	

•  Digital	signatures	for	authentication	
–  Can	“sign”	a	message	with	your	private	key	

•  Session	key	establishment	
–  Exchange	messages	to	create	a	secret	session	key	
–  Then	switch	to	symmetric	cryptography	(why?)	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 24	



Diffie-Hellman	Protocol	(1976)		
•  Alice	and	Bob	never	met	and	share	no	secrets	
•  Public	info:	p	and	g	

–  p	is	a	large	prime	number,	g	is	a	generator	of	Zp*	
•  Zp*={1,	2	…	p-1};	∀a	∈ Zp*		∃i		such	that	a=gi	mod	p	
•  Modular	arithmetic:	numbers	“wrap	around”	after	they	reach	p	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 25	

Alice	 Bob	

Pick	secret,	random	X	 Pick	secret,	random	Y	

gy	mod	p	

gx	mod	p	

Compute	k=(gy)x=gxy	mod	p	
	

Compute	k=(gx)y=gxy	mod	p	
	



Why	is	Diffie-Hellman	Secure?	

•  Discrete	Logarithm	(DL)	problem:		
					given	gx	mod	p,	it’s	hard	to	extract	x	
–  There	is	no	known	efficient	algorithm	for	doing	this	
–  This	is	not	enough	for	Diffie-Hellman	to	be	secure!	

•  Computational	Diffie-Hellman	(CDH)	problem:	
					given	gx	and	gy,	it’s	hard	to	compute	gxy	mod	p	
– …	unless	you	know	x	or	y,	in	which	case	it’s	easy	

•  Decisional	Diffie-Hellman	(DDH)	problem:		
					given	gx	and	gy,	it’s	hard	to	tell	the	difference	between						

gxy	mod	p	and	gr	mod	p	where	r	is	random	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 26	



Properties	of	Diffie-Hellman	

•  Assuming	DDH	problem	is	hard	(depends	on	choice	of	
parameters!),	Diffie-Hellman	protocol	is	a	secure	key	
establishment	protocol	against	passive	attackers	
–  Eavesdropper	can’t	tell	the	difference	between	the	

established	key	and	a	random	value	
–  Can	use	the	new	key	for	symmetric	cryptography	

•  Diffie-Hellman	protocol	(by	itself)	does	not	provide	
authentication	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 27	



Requirements	for	Public	Key	Encryption	

•  Key	generation:	computationally	easy	to	generate	
a	pair	(public	key	PK,	private	key	SK)	

•  Encryption:	given	plaintext	M	and	public	key	PK,	
easy	to	compute	ciphertext	C=EPK(M)	

•  Decryption:	given	ciphertext	C=EPK(M)	and	private	
key	SK,	easy	to	compute	plaintext	M	
–  Infeasible	to	learn	anything	about	M	from	C	without	SK	
–  Trapdoor	function:	Decrypt(SK,Encrypt(PK,M))=M	

4/18/16	 CSE	484	/	CSE	M	584	-	Spring	2015	 28	


