CSE 484 In-class Worksheet #2
Name: ________________ UWNetID: _____________ Date: __________________
Email address: __
Partner names for this activity: ____________________________________

Q1: (groups of 4) Recall that the stack contains both data (e.g., local variables) and control flow information (like saved frame pointers and instruction pointers to return to), side by side. Some of that data may be controlled by users (read: attackers!), allowing them to control some of the data on the stack. How can an attacker abuse this? What are the stack’s assets? How might an attacker control more data on the stack than we expect?

[bookmark: _GoBack]Q2: (groups of 2) In the figure below, draw what happens on the stack (x86) when this function is called? What might get overwritten if str is longer than 126 bytes?

void func(char *str) {
char buf[126];
strcpy(buf,str);
}
[image:]

Q3: Apache 1.3 had the following code:

strcpy(record,user);
strcat(record,”:”);
strcat(record,cpw);

The published fix:

strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1);

Is this fix good? If so, why? If not, why not?

Q4: Consider this code:

void mycopy(char *input) {
char buffer[512]; int i;

for (i=0; i<=512; i++)
buffer[i] = input[i];
}
void main(int argc, char *argv[]) {
if (argc==2)
mycopy(argv[1]);
}

Is this code exploitable? If not, why not? If so, why? You may use the diagram below to help answer this question, if you wish.

[image:]

image1.png
Top Bottom
-

Previous Stack Frames

Addr OxFF..F

