
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Mobile	Platform	Security	

Fall	2016	
	

Ada	(Adam)	Lerner	
lerner@cs.washington.edu	

Thanks	to	Franzi	Roesner,	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	
Manferdelli,	John	Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	
slides	and	materials	...	

Administrative	

•  Final	project	is	out!	

•  An	outline	of	your	presentation	is	due	this	
Friday.	

•  The	final	video	is	due	next	Friday	(the	last	
day	of	class).	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 2	

Administrative	

•  My	office	hours	moved	for	this	week:	
– Moved	to	Wednesday	at	12:30-1:30	pm.	

•  By	appointment	is	always	available.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 3	

Administrative	

•  There	will	be	no	lab	3.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 4	

Security	Mindset	Anecdote	

•  PGP	–	released	in	the	early	1990s,	when	
encryption	with	key	lengths	greater	than	40	
bits	was	classified	as	a	“munition”	and	
subject	to	weapons	export	laws.	

•  Its	creator,	Phil	Zimmerman	was	criminally	
investigated	for	“munitions	export	without	a	
license”	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 5	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 6	

“This	book	contains	a	formatted	version	
of	the	complete	source	code	for	the	
latest	release	(2.6.2)	of	PGP.”	

The	First	Amendment	and	Code	

•  Federal	appears	courts	have	ruled	that	
crypto	source	code	is	speech	under	the	First	
Amendment	

•  Export	restrictions	have	been	loosened	
(small	list	of	countries	are	restricted	–	the	
same	ones	to	which	most	US	trade	is	
prohibited)	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 7	

Improving(?)	Passwords	

•  Add	biometrics	
–  For	example,	keystroke	dynamics	or	voiceprint	

•  Graphical	passwords	
–  Goal:	easier	to	remember?		no	need	to	write	down?	

•  Password	managers	
–  Examples:	LastPass,	KeePass,	built	into	browsers	

•  Two-factor	authentication	
–  Leverage	phone	(or	other	device)	for	authentication	

11/28/16	 8	

Multi-Factor	Authentication	

11/28/16	 9	

Multi-Factor	Authentication	

11/28/16	 10	

What	About	Biometrics?	

•  Authentication:		What	you	are	
•  Unique	identifying	characteristics	to	authenticate	

user	or	create	credentials	
–  Biological	and	physiological:		Fingerprints,	iris	scan	
–  Behaviors	characteristics	-	how	perform	actions:		

Handwriting,	typing,	gait	
•  Advantages:	

–  Nothing	to	remember	
–  Passive	
–  Can’t	share	(generally)	
– With	perfect	accuracy,	could	be	fairly	unique	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 11	

Issues	with	Biometrics	

•  Private,	but	not	secret	
– Maybe	encoded	on	the	back	of	an	ID	card?	
– Maybe	encoded	on	your	glass,	door	handle,	...	
–  Sharing	between	multiple	systems?	

•  Revocation	is	difficult	(impossible?)	
–  Sorry,	your	iris	has	been	compromised,	please	create	a	

new	one...	
•  Physically	identifying	

–  Soda	machine	to	cross-reference	fingerprint	with	DMV?	
•  Birthday	paradox	

– With	false	accept	rate	of	1	in	a	million,	probability	of	
false	match	is	above	50%	with	only	1609	samples	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 12	

Attacking	Biometrics	

•  An	adversary	might	try	to	steal	biometric	info	
– Malicious	fingerprint	reader	

•  Consider	when	biometric	is	used	to	derive	a	cryptographic	key	

–  Residual	fingerprint	on	a	glass	
•  Ex:	Apple’s	TouchID	
	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 13	

Attacking	Biometrics	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 14	

[Starbug	--	http://istouchidhackedyet.com/]	

Attacking	Biometrics	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 15	

[Starbug	--	http://istouchidhackedyet.com/]	

Attacking	Biometrics	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 16	

[Starbug	--	http://istouchidhackedyet.com/]	

Attacking	Biometrics	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 17	

[Starbug	--	http://istouchidhackedyet.com/]	

MOBILE	PLATFORM	SECURITY	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 18	

Roadmap	

•  Mobile	malware	
•  Mobile	platforms	vs.	traditional	platforms	
•  Deep	dive	into	Android	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 19	

Questions:	Mobile	Malware	

Q1	(bottom	third	of	the	room):		How	might	
malware	authors	get	malware	onto	phones?		
	

Q2	(middle	third):		What	are	some	goals	that	
mobile	device	malware	authors	might	have?	
What	assets	are	present	on	a	smartphone?	
	

Q3	(top	third):		What	technical	things	might	
malware	authors	do?	What	are	the	threats/
vulnerabilities	on	a	smartphone?	
	
11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 20	

Smartphone	(In)Security	

Users	accidentally	install	malicious	applications.	

11/28/16	 21	CSE	484	/	CSE	M	584	-	Fall	2016	

Smartphone	(In)Security	

Even	legitimate	applications	exhibit	questionable	behavior.	

11/28/16	 22	

Hornyack	et	al.:	43	of	110	Android	
applications	sent	location	or	phone	ID	to	
third-party	advertising/analytics	servers.	

CSE	484	/	CSE	M	584	-	Fall	2016	

Malware	in	the	Wild	

[Zhou	et	al.]	

Android	malware	is	growing.	
Today	(2016):	millions	of	samples.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 23	

Mobile	Malware	Attack	Vectors	

•  Unique	to	phones:	
–  Premium	SMS	messages		
–  Identify	location	
– Record	phone	calls	
–  Log	SMS		

•  Similar	to	desktop/PCs:		
–  Connects	to	botmasters	
–  Steal	data	
–  Phishing		
– Malvertising		

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 24	

Mobile	Malware	Examples	

•  DroidDream	(Android)	
–  Over	58	apps	uploaded	to	Google	app	market	

–  Conducts	data	theft;	send	credentials	to	attackers		

•  Zitmo	(Symbian,BlackBerry,Windows,Android)	
–  Poses	as	mobile	banking	application	

–  Captures	info	from	SMS	–	steal	banking	2nd	factors	

–  Works	with	Zeus	botnet		

•  Ikee	(iOS)		
–  Worm	capabilities	(targeted	default	ssh	password)		

–  Worked	only	on	jailbroken	phones	with	ssh	installed	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 25	

Mobile	Malware	Examples	
“ikee	is	never	going	to	give	you	up”	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 26	

(Android)	Malware	in	the	Wild	

What	does	it	do?	
Root	

Exploit	
Remote	Control	 Financial	Charges	 Information	Stealing	

Net	 SMS	 Phone	
Call	

SMS	 Block	
SMS	

SMS	 Phone	#	 User	
Account	

#	
Families	

20	 27	 1	 4	 28	 17	 13	 15	 3	

#	
Samples	

1204	 1171	 1	 256	 571	 315	 138	 563	 43	

[Zhou	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 27	

Why	all	these	problems	with	mobile	malware?	

Background:	Before	Mobile	Platforms	

Assumptions	in	traditional	OS	(e.g.,	Linux)	design:	
1.  There	may	be	multiple	users	who	don’t	trust	each	other.	
2.  Once	an	application	is	installed,	it’s	(more	or	less)	trusted.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 28	

Background:	Before	Mobile	Platforms	

Assumptions	in	traditional	OS	(e.g.,	Linux)	design:	
1.  There	may	be	multiple	users	who	don’t	trust	each	other.	
2.  Once	an	application	is	installed,	it’s	(more	or	less)	trusted.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 29	

Apps	can	do	anything	the	UID	
they’re	running	under	can	do.	

What’s	Different	about	Mobile	Platforms?	

•  Applications	are	isolated	
–  Each	runs	in	a	separate	execution	context	
–  No	default	access	to	file	system,	devices,	etc.	
–  Different	than	traditional	OSes	where	multiple	

applications	run	with	the	same	user	permissions!	
	
•  App	Store:	approval	process	for	applications	

– Market:	Vendor	controlled/Open	
–  App	signing:	Vendor-issued/self-signed	
–  User	approval	of	permissions		

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 30	

More	Details:	Android	

•  Based	on	Linux	
•  Application	sandboxes	

–  Applications	run	as																																																															
separate	UIDs,	in																																																																	
separate	processes.	

– Memory	corruption																																																																
errors	only	lead	to																																																																
arbitrary	code	execution	in	the	context	of	the	particular	
application,	not	complete	system	compromise!	

–  (Can	still	escape	sandbox	–	but	must	compromise	Linux	
kernel	to	do	so.)	ß	allows	rooting	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 31	

[Enck	et	al.]	

Android	Applications	

•  Activities	provide	user	interfaces.	
•  Services	run	in	the	background.	
•  BroadcastReceivers	receive	messages	sent	to	

multiple	applications	(e.g.,	BOOT_COMPLETED).	
•  ContentProviders	are	databases	addressable	by	

their	application-defined	URIs.	

•  AndroidManifest.xml	
–  Specifies	application	components	
–  Specifies	required	permissions	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 32	

Rooting	and	Jailbreaking	

•  Allows	user	to	run	applications	with	root	privileges	
–  e.g.,	modify/delete	system	files,	app	management,	CPU	

management,	network	management,	etc.	

•  Done	by	exploiting	vulnerability	in	firmware	to	
install	su	binary.	

•  Double-edged	sword…	

•  Note:	iOS	is	more	restrictive	than	Android	
–  Doesn’t	allow	“side-loading”	apps,	etc.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 33	

Challenges	with	Isolated	Apps	

So	mobile	platforms	isolate	applications	for	
security,	but…	

1.  Permissions:	How	can	applications	access	
sensitive	resources?	

2.  Communication:	How	can	applications	
communicate	with	each	other?	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 34	

(1)	Permission	Granting	Problem	

Smartphones	(and	other	modern	OSes)	try	to	prevent	
such	attacks	by	limiting	applications’	access	to:	

–  System	Resources	(clipboard,	file	system).	
–  Devices	(camera,	GPS,	phone,	…).	

	

How	should	operating	system	
grant	permissions	to	applications?	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 35	

State	of	the	Art	
Prompts	(time-of-use)	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 36	

State	of	the	Art	
Prompts	(time-of-use)	 Manifests	(install-time)	

Disruptive,	which	leads	to	
prompt-fatigue.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 37	

State	of	the	Art	
Prompts	(time-of-use)	 Manifests	(install-time)	

Out	of	context;	not	
understood	by	users.	

In	practice,	both	are	overly	permissive:		
Once	granted	permissions,	apps	can	misuse	them.	

Disruptive,	which	leads	to	
prompt-fatigue.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 38	

Are	Manifests	Usable?	

Do	users	pay	attention	to	permissions?	

[Felt	et	al.]	

…	but	88%	of	users	looked	at	reviews.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 39	

Do	users	understand	the	warnings?	

Are	Manifests	Usable?	
[Felt	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 40	

Do	users	act	on	permission	information?	
	

“Have	you	ever	not	installed	an	app	because	of	permissions?”	

Are	Manifests	Usable?	
[Felt	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 41	

Over-Permissioning	

•  Android	permissions	are	badly	documented.	
•  Researchers	have	mapped	APIs	à	permissions.	
www.android-permissions.org	(Felt	et	al.),	http://pscout.csl.toronto.edu	(Au	et	al.)	

	

[Felt	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 42	

Manifests	rely	on	the	user	to	make	
good	choices	at	install	time	

•  It’s	not	clear	that	users	know	how	to	make	
the	right	choice	–	or	that	there	IS	a	right	
choice.	

•  I	don’t	want	ANY	app	to	access	my	camera	
at	all	times.	I	just	want	apps	to	access	my	
camera	when	they	need	to	for	legitimate	
purposes!	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 43	

Android	6.0:	Prompts!	

•  First-use	prompts	for	sensitive	permission	(like	iOS).	
•  Big	change!	Now	app	developers	need	to	check	for	

permissions	or	catch	exceptions.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 44	

Promps	rely	on	the	user	to	make	
good	choices	at	use	time	

•  It’s	not	clear	that	users	know	how	to	make	
the	right	choice	at	use	time	either.	

•  Still	only	checks	on	first	use	–	the	app	can	
still	use	the	resource	for	any	reason	it	wants,	
at	any	time	now	or	in	the	future.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 45	

Improving	Permissions:	AppFence	
[Hornyack	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 46	

Let this application
access my location
now.

Insight:
A user’s natural UI actions
within an application implicitly
carry permission-granting
semantics.

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 47	

Improving	Permissions:	
User-Driven	Access	Control	

[Roesner	et	al.]	

Let this application
access my location
now.

Insight:
A user’s natural UI actions
within an application implicitly
carry permission-granting
semantics.

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 48	

Study shows:
Many users already believe (52% of 186)
– and/or desire (68%) – that resource
access follows the user-driven access
control model.

Improving	Permissions:	
User-Driven	Access	Control	

[Roesner	et	al.]	

New	OS	Primitive:		
Access	Control	Gadgets	(ACGs)	

Approach:	Make	resource-related	UI	elements	first-class	
operating	system	objects	(access	control	gadgets).	
	

•  To	receive	resource	access,	applications	must	embed	a	
system-provided	ACG.	

•  ACGs	allow	the	OS	to	capture	the	user’s	permission	
granting	intent	in	application-agnostic	way.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 49	

(2)	Inter-Process	Communication	

•  Primary	mechanism	in	Android:	Intents	
– Sent	between	application	components	

•  e.g.,	with	startActivity(intent)

– Explicit:	specify	component	name	
•  e.g.,	com.example.testApp.MainActivity	

–  Implicit:	specify	action	(e.g.,	ACTION_VIEW)	and/
or	data	(URI	and	MIME	type)	

•  Apps	specify	Intent	Filters	for	their	components.	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 50	

Unauthorized	Intent	Receipt	

•  Attack	#1:	Eavesdropping	/	Broadcast	Thefts	
–  Implicit	intents	make	intra-app	messages	public.	

•  Attack	#2:	Activity	Hijacking	
– May	not	always	work:	

•  Attack	#3:	Service	Hijacking	
–  Android	picks	one	at	random		 	 	 	 	 	 													

upon	conflict!	

[Chin	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 51	

Intent	Spoofing	

•  Attack	#1:	General	intent	spoofing	
–  Receiving	implicit	intents	makes	component	public.	
–  Allows	data	injection.	

•  Attack	#2:	System	intent	spoofing	
–  Can’t	directly	spoof,	but	victim	apps	often	don’t	check	

specific	“action”	in	intent.	

[Chin	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 52	

Permission	Re-Delegation	

•  An	application	without	a	permission	gains	
additional	privileges	through	another	application.	

•  Demo	video	
•  Settings	application	is																					 	 	 	 	 	 			

deputy:	has	permissions,	 	 	 	 	 	 											
and	accidentally	exposes																																													
APIs	that	use	those																			 	 	 							
permissions.	

API

Settings

Demo
malware

toggleWifi()	

pressButton(0)	

Permission System

toggleWifi()	

[Felt	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 53	

Aside:	Incomplete	Isolation	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 54	

Embedded	UIs	and	libraries	always	run	with	the	host	
application’s	permissions!	(No	same-origin	policy	here…)	

[Shekhar	et	al.]	

Like	us	on		
Facebook!	

Ad	from		
ad	library	
	
	

Social	button	
from	Facebook	
library	

Map	from	
Google	
library	

More	on	Android…	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 55	

Android	Application	Signing	

•  Apps	are	signed	
–  Often	with	self-signed	certificates	
–  Signed	application	certificate	defines	which	user	ID	is	

associated	with	which	applications	
–  Different	apps	run	under	different	UIDs	

•  Shared	UID	feature	
–  Shared	Application	Sandbox	possible,	where	two	or	

more	apps	signed	with	same	developer	key	can	declare	a	
shared	UID	in	their	manifest	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 56	

Shared	UIDs	

•  App	1:		Requests	GPS	/	camera	access	
•  App	2:		Requests	Network	capabilities	

•  Generally:	
–  First	app	can’t	exfiltrate	information	
–  Second	app	can’t	exfiltrate	anything	interesting	

•  With	Shared	UIDs	(signed	with	same	private	key)	
–  Permissions	are	a	superset	of	permissions	for	each	app	
–  App	1	can	now	exfiltrate;	App	2	can	now	access	GPS	/	

camera	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 57	

File	Permissions	

•  Files	written	by	one	application	cannot	be	
read	by	other	applications	
–  Previously,	this	wasn’t	true	for	files	stored	on	the	SD	

card	(world	readable!)	–	Android	cracked	down	on	this	

•  It	is	possible	to	do	full	file	system	encryption	
–  Key	=	Password/PIN	combined	with	salt,	hashed	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 58	

Memory	Management	

•  Address	Space	Layout	Randomization	to	
randomize	addresses	on	stack	

•  Hardware-based	No	eXecute	(NX)	to	prevent	code	
execution	on	stack/heap	

•  Stack	guard	derivative	
•  Some	defenses	against	double	free	bugs	(based	on	

OpenBSD’s	dmalloc()	function)	
•  etc.	

[See	http://source.android.com/tech/security/index.html]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 59	

Android	Fragmentation	

•  Many	different	variants	of	
Android	(unlike	iOS)	
– Motorola,	HTC,	Samsung,	…	

•  Less	secure	ecosystem	
–  Inconsistent	or	incorrect	

implementations	
–  Slow	to	propagate	kernel	

updates	and	new	versions	
	

[https://developer.android.com/about/
dashboards/index.html]		

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 60	

