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Administrative	

•  Final	project	is	out!	

•  An	outline	of	your	presentation	is	due	this	
Friday.	

•  The	final	video	is	due	next	Friday	(the	last	
day	of	class).	
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Administrative	

•  My	office	hours	moved	for	this	week:	
– Moved	to	Wednesday	at	12:30-1:30	pm.	

•  By	appointment	is	always	available.	
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Administrative	

•  There	will	be	no	lab	3.	
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Security	Mindset	Anecdote	

•  PGP	–	released	in	the	early	1990s,	when	
encryption	with	key	lengths	greater	than	40	
bits	was	classified	as	a	“munition”	and	
subject	to	weapons	export	laws.	

•  Its	creator,	Phil	Zimmerman	was	criminally	
investigated	for	“munitions	export	without	a	
license”	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 5	



11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 6	

“This	book	contains	a	formatted	version	
of	the	complete	source	code	for	the	
latest	release	(2.6.2)	of	PGP.”	



The	First	Amendment	and	Code	

•  Federal	appears	courts	have	ruled	that	
crypto	source	code	is	speech	under	the	First	
Amendment	

•  Export	restrictions	have	been	loosened	
(small	list	of	countries	are	restricted	–	the	
same	ones	to	which	most	US	trade	is	
prohibited)	
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Improving(?)	Passwords	

•  Add	biometrics	
–  For	example,	keystroke	dynamics	or	voiceprint	

•  Graphical	passwords	
–  Goal:	easier	to	remember?		no	need	to	write	down?	

•  Password	managers	
–  Examples:	LastPass,	KeePass,	built	into	browsers	

•  Two-factor	authentication	
–  Leverage	phone	(or	other	device)	for	authentication	
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Multi-Factor	Authentication	
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Multi-Factor	Authentication	
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What	About	Biometrics?	

•  Authentication:		What	you	are	
•  Unique	identifying	characteristics	to	authenticate	

user	or	create	credentials	
–  Biological	and	physiological:		Fingerprints,	iris	scan	
–  Behaviors	characteristics	-	how	perform	actions:		

Handwriting,	typing,	gait	
•  Advantages:	

–  Nothing	to	remember	
–  Passive	
–  Can’t	share	(generally)	
– With	perfect	accuracy,	could	be	fairly	unique	
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Issues	with	Biometrics	

•  Private,	but	not	secret	
– Maybe	encoded	on	the	back	of	an	ID	card?	
– Maybe	encoded	on	your	glass,	door	handle,	...	
–  Sharing	between	multiple	systems?	

•  Revocation	is	difficult	(impossible?)	
–  Sorry,	your	iris	has	been	compromised,	please	create	a	

new	one...	
•  Physically	identifying	

–  Soda	machine	to	cross-reference	fingerprint	with	DMV?	
•  Birthday	paradox	

– With	false	accept	rate	of	1	in	a	million,	probability	of	
false	match	is	above	50%	with	only	1609	samples	
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Attacking	Biometrics	

•  An	adversary	might	try	to	steal	biometric	info	
– Malicious	fingerprint	reader	

•  Consider	when	biometric	is	used	to	derive	a	cryptographic	key	

–  Residual	fingerprint	on	a	glass	
•  Ex:	Apple’s	TouchID	
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Attacking	Biometrics	
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[Starbug	--	http://istouchidhackedyet.com/]	



Attacking	Biometrics	
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Attacking	Biometrics	
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Attacking	Biometrics	
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[Starbug	--	http://istouchidhackedyet.com/]	



MOBILE	PLATFORM	SECURITY	
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Roadmap	

•  Mobile	malware	
•  Mobile	platforms	vs.	traditional	platforms	
•  Deep	dive	into	Android	
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Questions:	Mobile	Malware	

Q1	(bottom	third	of	the	room):		How	might	
malware	authors	get	malware	onto	phones?		
	

Q2	(middle	third):		What	are	some	goals	that	
mobile	device	malware	authors	might	have?	
What	assets	are	present	on	a	smartphone?	
	

Q3	(top	third):		What	technical	things	might	
malware	authors	do?	What	are	the	threats/
vulnerabilities	on	a	smartphone?	
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Smartphone	(In)Security	

Users	accidentally	install	malicious	applications.	
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Smartphone	(In)Security	

Even	legitimate	applications	exhibit	questionable	behavior.	
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Hornyack	et	al.:	43	of	110	Android	
applications	sent	location	or	phone	ID	to	
third-party	advertising/analytics	servers.	
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Malware	in	the	Wild	

[Zhou	et	al.]	

Android	malware	is	growing.	
Today	(2016):	millions	of	samples.	
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Mobile	Malware	Attack	Vectors	

•  Unique	to	phones:	
–  Premium	SMS	messages		
–  Identify	location	
– Record	phone	calls	
–  Log	SMS		

•  Similar	to	desktop/PCs:		
–  Connects	to	botmasters	
–  Steal	data	
–  Phishing		
– Malvertising		
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Mobile	Malware	Examples	

•  DroidDream	(Android)	
–  Over	58	apps	uploaded	to	Google	app	market	

–  Conducts	data	theft;	send	credentials	to	attackers		

•  Zitmo	(Symbian,BlackBerry,Windows,Android)	
–  Poses	as	mobile	banking	application	

–  Captures	info	from	SMS	–	steal	banking	2nd	factors	

–  Works	with	Zeus	botnet		

•  Ikee	(iOS)		
–  Worm	capabilities	(targeted	default	ssh	password)		

–  Worked	only	on	jailbroken	phones	with	ssh	installed	
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Mobile	Malware	Examples	
“ikee	is	never	going	to	give	you	up”	
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(Android)	Malware	in	the	Wild	

What	does	it	do?	
Root	

Exploit	
Remote	Control	 Financial	Charges	 Information	Stealing	

Net	 SMS	 Phone	
Call	

SMS	 Block	
SMS	

SMS	 Phone	#	 User	
Account	

#	
Families	

20	 27	 1	 4	 28	 17	 13	 15	 3	

#	
Samples	

1204	 1171	 1	 256	 571	 315	 138	 563	 43	

[Zhou	et	al.]	
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Why	all	these	problems	with	mobile	malware?	



Background:	Before	Mobile	Platforms	

Assumptions	in	traditional	OS	(e.g.,	Linux)	design:	
1.  There	may	be	multiple	users	who	don’t	trust	each	other.	
2.  Once	an	application	is	installed,	it’s	(more	or	less)	trusted.	
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Apps	can	do	anything	the	UID	
they’re	running	under	can	do.	



What’s	Different	about	Mobile	Platforms?	

•  Applications	are	isolated	
–  Each	runs	in	a	separate	execution	context	
–  No	default	access	to	file	system,	devices,	etc.	
–  Different	than	traditional	OSes	where	multiple	

applications	run	with	the	same	user	permissions!	
	
•  App	Store:	approval	process	for	applications	

– Market:	Vendor	controlled/Open	
–  App	signing:	Vendor-issued/self-signed	
–  User	approval	of	permissions		
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More	Details:	Android	

•  Based	on	Linux	
•  Application	sandboxes	

–  Applications	run	as																																																															
separate	UIDs,	in																																																																	
separate	processes.	

– Memory	corruption																																																																
errors	only	lead	to																																																																
arbitrary	code	execution	in	the	context	of	the	particular	
application,	not	complete	system	compromise!	

–  (Can	still	escape	sandbox	–	but	must	compromise	Linux	
kernel	to	do	so.)	ß	allows	rooting	
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[Enck	et	al.]	



Android	Applications	

•  Activities	provide	user	interfaces.	
•  Services	run	in	the	background.	
•  BroadcastReceivers	receive	messages	sent	to	

multiple	applications	(e.g.,	BOOT_COMPLETED).	
•  ContentProviders	are	databases	addressable	by	

their	application-defined	URIs.	

•  AndroidManifest.xml	
–  Specifies	application	components	
–  Specifies	required	permissions	
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Rooting	and	Jailbreaking	

•  Allows	user	to	run	applications	with	root	privileges	
–  e.g.,	modify/delete	system	files,	app	management,	CPU	

management,	network	management,	etc.	

•  Done	by	exploiting	vulnerability	in	firmware	to	
install	su	binary.	

•  Double-edged	sword…	

•  Note:	iOS	is	more	restrictive	than	Android	
–  Doesn’t	allow	“side-loading”	apps,	etc.	
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Challenges	with	Isolated	Apps	

So	mobile	platforms	isolate	applications	for	
security,	but…	

1.  Permissions:	How	can	applications	access	
sensitive	resources?	

2.  Communication:	How	can	applications	
communicate	with	each	other?	
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(1)	Permission	Granting	Problem	

Smartphones	(and	other	modern	OSes)	try	to	prevent	
such	attacks	by	limiting	applications’	access	to:	

–  System	Resources	(clipboard,	file	system).	
–  Devices	(camera,	GPS,	phone,	…).	

	

How	should	operating	system	
grant	permissions	to	applications?	
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State	of	the	Art	
Prompts	(time-of-use)	
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State	of	the	Art	
Prompts	(time-of-use)	 Manifests	(install-time)	

Disruptive,	which	leads	to	
prompt-fatigue.	
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State	of	the	Art	
Prompts	(time-of-use)	 Manifests	(install-time)	

Out	of	context;	not	
understood	by	users.	

In	practice,	both	are	overly	permissive:		
Once	granted	permissions,	apps	can	misuse	them.	

Disruptive,	which	leads	to	
prompt-fatigue.	
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Are	Manifests	Usable?	

Do	users	pay	attention	to	permissions?	

[Felt	et	al.]	

…	but	88%	of	users	looked	at	reviews.	
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Do	users	understand	the	warnings?	

Are	Manifests	Usable?	
[Felt	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 40	



Do	users	act	on	permission	information?	
	

“Have	you	ever	not	installed	an	app	because	of	permissions?”	

Are	Manifests	Usable?	
[Felt	et	al.]	

11/28/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 41	



Over-Permissioning	

•  Android	permissions	are	badly	documented.	
•  Researchers	have	mapped	APIs	à	permissions.	
www.android-permissions.org	(Felt	et	al.),	http://pscout.csl.toronto.edu	(Au	et	al.)	

	

[Felt	et	al.]	
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Manifests	rely	on	the	user	to	make	
good	choices	at	install	time	

•  It’s	not	clear	that	users	know	how	to	make	
the	right	choice	–	or	that	there	IS	a	right	
choice.	

•  I	don’t	want	ANY	app	to	access	my	camera	
at	all	times.	I	just	want	apps	to	access	my	
camera	when	they	need	to	for	legitimate	
purposes!	
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Android	6.0:	Prompts!	

•  First-use	prompts	for	sensitive	permission	(like	iOS).	
•  Big	change!	Now	app	developers	need	to	check	for	

permissions	or	catch	exceptions.	
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Promps	rely	on	the	user	to	make	
good	choices	at	use	time	

•  It’s	not	clear	that	users	know	how	to	make	
the	right	choice	at	use	time	either.	

•  Still	only	checks	on	first	use	–	the	app	can	
still	use	the	resource	for	any	reason	it	wants,	
at	any	time	now	or	in	the	future.	
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Improving	Permissions:	AppFence	
[Hornyack	et	al.]	
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Let this application 
access my location 
now. 

Insight: 
A user’s natural UI actions 
within an application implicitly 
carry permission-granting 
semantics.  
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Improving	Permissions:	
User-Driven	Access	Control	

[Roesner	et	al.]	



Let this application 
access my location 
now. 

Insight: 
A user’s natural UI actions 
within an application implicitly 
carry permission-granting 
semantics.  
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Study shows:  
Many users already believe (52% of 186)  
– and/or desire (68%) – that resource 
access follows the user-driven access 
control model. 

Improving	Permissions:	
User-Driven	Access	Control	

[Roesner	et	al.]	



New	OS	Primitive:		
Access	Control	Gadgets	(ACGs)	

Approach:	Make	resource-related	UI	elements	first-class	
operating	system	objects	(access	control	gadgets).	
	

•  To	receive	resource	access,	applications	must	embed	a	
system-provided	ACG.	

•  ACGs	allow	the	OS	to	capture	the	user’s	permission	
granting	intent	in	application-agnostic	way.	
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(2)	Inter-Process	Communication	

•  Primary	mechanism	in	Android:	Intents	
– Sent	between	application	components	

•  e.g.,	with	startActivity(intent)

– Explicit:	specify	component	name	
•  e.g.,	com.example.testApp.MainActivity	

–  Implicit:	specify	action	(e.g.,	ACTION_VIEW)	and/
or	data	(URI	and	MIME	type)	

•  Apps	specify	Intent	Filters	for	their	components.	
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Unauthorized	Intent	Receipt	

•  Attack	#1:	Eavesdropping	/	Broadcast	Thefts	
–  Implicit	intents	make	intra-app	messages	public.	

•  Attack	#2:	Activity	Hijacking	
– May	not	always	work:	

•  Attack	#3:	Service	Hijacking	
–  Android	picks	one	at	random		 	 	 	 	 	 													

upon	conflict!	

[Chin	et	al.]	
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Intent	Spoofing	

•  Attack	#1:	General	intent	spoofing	
–  Receiving	implicit	intents	makes	component	public.	
–  Allows	data	injection.	

•  Attack	#2:	System	intent	spoofing	
–  Can’t	directly	spoof,	but	victim	apps	often	don’t	check	

specific	“action”	in	intent.	

[Chin	et	al.]	
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Permission	Re-Delegation	

•  An	application	without	a	permission	gains	
additional	privileges	through	another	application.	

•  Demo	video	
•  Settings	application	is																					 	 	 	 	 	 			

deputy:	has	permissions,	 	 	 	 	 	 											
and	accidentally	exposes																																													
APIs	that	use	those																			 	 	 							
permissions.	

API 

Settings 

Demo 
malware 

toggleWifi()	

pressButton(0)	

Permission System 

toggleWifi()	

[Felt	et	al.]	
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Aside:	Incomplete	Isolation	
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Embedded	UIs	and	libraries	always	run	with	the	host	
application’s	permissions!	(No	same-origin	policy	here…)	

[Shekhar	et	al.]	

Like	us	on		
Facebook!	

Ad	from		
ad	library	
	
	

Social	button	
from	Facebook	
library	

Map	from	
Google	
library	



More	on	Android…	
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Android	Application	Signing	

•  Apps	are	signed	
–  Often	with	self-signed	certificates	
–  Signed	application	certificate	defines	which	user	ID	is	

associated	with	which	applications	
–  Different	apps	run	under	different	UIDs	

•  Shared	UID	feature	
–  Shared	Application	Sandbox	possible,	where	two	or	

more	apps	signed	with	same	developer	key	can	declare	a	
shared	UID	in	their	manifest	
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Shared	UIDs	

•  App	1:		Requests	GPS	/	camera	access	
•  App	2:		Requests	Network	capabilities	

•  Generally:	
–  First	app	can’t	exfiltrate	information	
–  Second	app	can’t	exfiltrate	anything	interesting	

•  With	Shared	UIDs	(signed	with	same	private	key)	
–  Permissions	are	a	superset	of	permissions	for	each	app	
–  App	1	can	now	exfiltrate;	App	2	can	now	access	GPS	/	

camera	
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File	Permissions	

•  Files	written	by	one	application	cannot	be	
read	by	other	applications	
–  Previously,	this	wasn’t	true	for	files	stored	on	the	SD	

card	(world	readable!)	–	Android	cracked	down	on	this	

•  It	is	possible	to	do	full	file	system	encryption	
–  Key	=	Password/PIN	combined	with	salt,	hashed	
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Memory	Management	

•  Address	Space	Layout	Randomization	to	
randomize	addresses	on	stack	

•  Hardware-based	No	eXecute	(NX)	to	prevent	code	
execution	on	stack/heap	

•  Stack	guard	derivative	
•  Some	defenses	against	double	free	bugs	(based	on	

OpenBSD’s	dmalloc()	function)	
•  etc.	

[See	http://source.android.com/tech/security/index.html]	
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Android	Fragmentation	

•  Many	different	variants	of	
Android	(unlike	iOS)	
– Motorola,	HTC,	Samsung,	…	

•  Less	secure	ecosystem	
–  Inconsistent	or	incorrect	

implementations	
–  Slow	to	propagate	kernel	

updates	and	new	versions	
	

[https://developer.android.com/about/
dashboards/index.html]		
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