
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	

	
Crypto	meets	Web	Security:	
Certificates	and	SSL/TLS	

Fall	2016	
	

Ada	(Adam)	Lerner	
lerner@cs.washington.edu	

Thanks	to	Franzi	Roesner,	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	
Manferdelli,	John	Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	
slides	and	materials	...	

Security	Mindset	Anecdote	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 2	

•  Change	voting	registration	information	(e.g.	
change	the	address	your	ballot	is	mailed	to)	
– First,	last	name	
– Birthday	
– Driver’s	license	number	

Security	Mindset	Anecdote	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 3	

Security	Mindset	Anecdote	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 4	

•  Change	voting	registration	information	(e.g.	
change	the	address	your	ballot	is	mailed	to)	
– First,	last	name	
– Birthday	
– Driver’s	license	number	

Security	Mindset	Anecdote	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 5	

Security	Mindset	Anecdote	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 6	

•  Change	voting	registration	information	(e.g.	
change	the	address	your	ballot	is	mailed	to)	
– First,	last	name	
– Birthday	
– Driver’s	license	number	
– Driver’s	license	issue	date	(added	recently)	

Diffie-Hellman:	Conceptually	

10/31/16	 CSE	484	/	CSE	M	584	-	Spring	2016	 7	

[from	Wikipedia]	

Common	paint:	p	and	g	
	
Secret	colors:	x	and	y	
	
Send	over	public	transport:		
gx	mod	p	
gy	mod	p	
	
Common	secret:	gxy	mod	p	

Diffie-Hellman	Protocol	(1976)		
•  Alice	and	Bob	never	met	and	share	no	secrets	
•  Public	info:	p	and	g	
–  p	is	a	large	prime	number,	g	is	a	generator	of	Zp*	

•  Zp*={1,	2	…	p-1};	∀a	∈ Zp*		∃i		such	that	a=gi	mod	p	
•  Modular	arithmetic:	numbers	“wrap	around”	after	they	reach	p	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 8	

Alice	 Bob	

Pick	secret,	random	X	 Pick	secret,	random	Y	

gy	mod	p	

gx	mod	p	

Compute	k=(gy)x=gxy	mod	p	
	

Compute	k=(gx)y=gxy	mod	p	
	

Why	is	Diffie-Hellman	Secure?	

•  Discrete	Logarithm	(DL)	problem:		
					given	gx	mod	p,	it’s	hard	to	extract	x	
–  There	is	no	known	efficient	algorithm	for	doing	this	
–  This	is	not	enough	for	Diffie-Hellman	to	be	secure!	

•  Computational	Diffie-Hellman	(CDH)	problem:	
					given	gx	and	gy,	it’s	hard	to	compute	gxy	mod	p	
– …	unless	you	know	x	or	y,	in	which	case	it’s	easy	

•  Decisional	Diffie-Hellman	(DDH)	problem:		
					given	gx	and	gy,	it’s	hard	to	tell	the	difference	between						

gxy	mod	p	and	gr	mod	p	where	r	is	random	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 9	

Properties	of	Diffie-Hellman	

•  Assuming	DDH	problem	is	hard	(depends	on	choice	of	
parameters!),	Diffie-Hellman	protocol	is	a	secure	key	
establishment	protocol	against	passive	attackers	
–  Eavesdropper	can’t	tell	the	difference	between	the	

established	key	and	a	random	value	
–  Can	use	the	new	key	for	symmetric	cryptography	

•  Diffie-Hellman	protocol	(by	itself)	does	not	provide	
authentication	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 10	

Choosing	p	

•  In	practice,	we	choose	very	large	primes	of	
the	form	

q	=	2p	+	1	
(where	p	is	prime)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 11	

RFC	3526	
	Smallest	prime	(1536-bit)	standardized	for	DH	is:	

	 	2^1536	-	2^1472	-	1	+	2^64	*	{	[2^1406	pi]	+	741804	}	
	
	Its	hexadecimal	value	is:	

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

Generator:	
10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 12	

RFC	3526	
	Smallest	prime	(1536-bit)	standardized	for	DH	is:	

	 	2^1536	-	2^1472	-	1	+	2^64	*	{	[2^1406	pi]	+	741804	}	
	
	Its	hexadecimal	value	is:	

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

Generator:	2	
10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 13	

RFC	3526	

• Biggest	prime	given	by	
RFC	3526	is	8192-bit	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 14	

Some	Number	Theory	Facts	

•  Euler	totient	function	ϕ(n)	(n≥1)	is	the	number	of	
integers	in	the	[1,n]	interval	that	are	relatively	prime	to	n	

– Two	numbers	are	relatively	prime	if	their	
greatest	common	divisor	(gcd)	is	1	
– Easy	to	compute	for	primes:	ϕ(p)	=	p-1	
– Note	that	if	a	and	b	are	relatively	prime,	
then	ϕ(ab)	=	ϕ(a)	ϕ(b)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 15	

Some	Number	Theory	Facts	

•  Euler	totient	function	ϕ(n)	(n≥1)	is	the	number	of	
integers	in	the	[1,n]	interval	that	are	relatively	prime	to	n	
–  Two	numbers	are	relatively	prime	if	their	greatest	

common	divisor	(gcd)	is	1	
–  Easy	to	compute	for	primes:	ϕ(p)	=	p-1	
–  Note	that	if	a	and	b	are	relatively	prime,	then																	
ϕ(ab)	=	ϕ(a)	ϕ(b)	

•  Euler’s	theorem:	if	a	∈	Zn*,	then	aϕ(n)=1	mod	n	
				Zn*:	integers	relatively	prime	to	n	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 16	

RSA	Cryptosystem	[Rivest,	Shamir,	Adleman	1977]	

•  Key	generation:	
–  Generate	random	large	primes	p,	q	

•  Say,	1024	bits	each	
–  Compute	n=pq	and	ϕ(n)=(p-1)(q-1)	
–  Choose	small	e,	relatively	prime	to	ϕ(n)	

•  Typically,	e=216+1=65537	
–  Compute	unique	d	such	that	ed	=	1	mod	ϕ(n)	

•  Modular	inverse:	d	=	e-1	mod	ϕ(n)	

–  Public	key	=	(e,n);		private	key	=	(d,n)	
•  Encryption	of	m:		c	=	me	mod	n	
•  Decryption	of	c:			cd	mod	n	=	(me)d	mod	n	=	m	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 17	

Why	RSA	Decryption	Works	

e⋅d=1	mod	ϕ(n),	thus	e⋅d=1+k⋅ϕ(n)	for	some	k	
	

Let	m	be	any	integer	in	Zn*	(not	all	of	Zn)	
cd	mod	n	=	(me)d	mod	n		=	m1+k⋅ϕ(n)	mod	n	
																		=	(m	mod	n)	*	(mk⋅ϕ(n)	mod	n)	
	

Recall:		Euler’s	theorem:	if	a	∈ Zn*,	then	aϕ(n)=1	mod	n	
	

cd	mod	n	=	(m	mod	n)	*	(1	mod	n)	
																		=	m	mod	n	
	

Proof	omitted:		True	for	all	m	in	Zn,	not	just	m	in	Zn*	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 18	

Why	is	RSA	Secure?	

•  RSA	problem:	given	c,	n=pq,	and	e	such	that												
gcd(e,	ϕ(n))=1,	find	m	such	that	me=c	mod	n	
–  In	other	words,	recover	m	from	ciphertext	c	and	public	key	(n,e)	by	

taking	eth	root	of	c	modulo	n	
–  There	is	no	known	efficient	algorithm	for	doing	this	

•  Factoring	problem:	given	positive	integer	n,	find	primes	
p1,	…,	pk	such	that	n=p1

e1p2
e2…pk

ek	

•  If	factoring	is	easy,	then	RSA	problem	is	easy	(knowing	
factors	means	you	can	compute	d	=	inverse	of	e	mod	(p-1)(q-1))	
–  It	may	be	possible	to	break	RSA	without	factoring	n	--	but	if	it	is,	we	

don’t	know	how	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 19	

RSA	Encryption	Caveats	

•  Encrypted	message	needs	to	be	interpreted	as	an	
integer	less	than	n	

•  Don’t	use	RSA	directly	for	privacy	–	output	is	
deterministic!		Need	to	pre-process	input	somehow	

•  Plain	RSA	also	does	not	provide	integrity	
–  Can	tamper	with	encrypted	messages	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 20	

Optimal	Asymmetric	Encryption	
Padding	

•  Don’t	use	RSA	directly	for	privacy	–	output	is	
deterministic!		Need	to	pre-process	input	somehow	

•  OAEP	changes	the	plaintext	randomly,	creating	a	
scheme	which	is	secure	under	chosen	plaintext	
attacks	

	
OAEP:	instead	of	encrypting	M,	encrypt		
M⊕G(r)	;	r⊕H(M⊕G(r))	
–  r	is	random	and	fresh,	G	and	H	are	hash	functions	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 21	

Digital	Signatures:	Basic	Idea	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 22	

?	

Given:	Everybody	knows	Bob’s	public	key	
													Only	Bob	knows	the	corresponding	private	key	

private	key	

Goal:	Bob	sends	a	“digitally	signed”	message	
1.  To	compute	a	signature,	must	know	the	private	key	
2.  To	verify	a	signature,	only	the	public	key	is	needed	

public	key	

public	key	

Alice	 Bob	

RSA	Signatures	

•  Public	key	is	(n,e),	private	key	is	(n,d)	
•  To	sign	message	m:		s	=	md	mod	n	

–  Signing	&	decryption	are	same	underlying	operation	in	RSA	
–  It’s	infeasible	to	compute	s	on	m	if	you	don’t	know	d	

•  To	verify	signature	s	on	message	m:				
				verify	that	se	mod	n	=	(md)e	mod	n	=	m	
–  Just	like	encryption	(for	RSA	primitive)	
–  Anyone	who	knows	n	and	e	(public	key)	can	verify	signatures	

produced	with	d	(private	key)	
•  In	practice,	also	need	padding	&	hashing	

–  Standard	padding/hashing	schemes	exist	for	RSA	signatures	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 23	

DSS	Signatures	

•  Digital	Signature	Standard	(DSS)	
–  U.S.	government	standard	(1991,	most	recent	rev.	2013)	

•  Public	key:	(p,	q,	g,	y=gx	mod	p),	private	key:	x	
•  Security	of	DSS	requires	hardness	of	discrete	log	
–  If	could	solve	discrete	logarithm	problem,	would	extract	

x	(private	key)	from	gx	mod	p	(public	key)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 24	

Advantages	of	Public	Key	Crypto	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 25	

•  Confidentiality	without	shared	secrets	
–  Very	useful	in	open	environments	
–  Can	use	this	for	key	establishment,	with	fewer	“chicken-

or-egg”	problems	
•  With	symmetric	crypto,	two	parties	must	share	a	secret	before	
they	can	exchange	secret	messages	

•  Authentication	without	shared	secrets	
–  Use	digital	signatures	to	prove	the	origin	of	messages	

•  Encryption	keys	are	public,	but	must	be	sure	that	
Alice’s	public	key	is	really	her	public	key	
–  This	is	a	hard	problem…	

Disadvantages	of	Public	Key	Crypto	

•  Calculations	are	2-3	orders	of	magnitude	slower	
–  Modular	exponentiation	is	an	expensive	computation	
–  Typical	usage:	use	public-key	cryptography	to	establish	a	shared	

secret,	then	switch	to	symmetric	crypto	
•  E.g.,	IPsec,	SSL,	SSH,	...	

•  Keys	are	longer	
–  4096+	bits	(RSA)	rather	than	128	bits	(AES)	

•  Relies	on	unproven	number-theoretic	assumptions	
–  What	if	factoring	is	easy?	

•  Factoring	is	believed	to	be	neither	P,	nor	NP-complete	
–  (Of	course,	symmetric	crypto	also	rests	on	unproven	

assumptions…)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 26	

Authenticity	of	Public	Keys	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 27	

?	

Problem:	How	does	Alice	know	that	the	public	key	
																			she	received	is	really	Bob’s	public	key?	

private	key	

Alice	
Bob	

public	key	

Threat:	Man-In-The-Middle	(MITM)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 28	

Google.com	

Certificates	

•  Public-key	certificate	
– Signed	statement	specifying	the	key	
and	identity	
• sigCA(“Bob”,	PKB)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 29	

Distribution	of	Public	Keys	

•  Public-key	certificate	
–  Signed	statement	specifying	the	key	and	identity	

•  sigCA(“Bob”,	PKB)	

•  Common	approach:	certificate	authority	(CA)	
–  Single	agency	responsible	for	certifying	public	keys	
– After	generating	a	private/public	key	pair,	user	
proves	his	identity	and	knowledge	of	the	private	key	
to	obtain	CA’s	certificate	for	the	public	key	(offline)	

–  Every	computer	is	pre-configured	with	CA’s	public	
key	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 30	

Trusted	Certificate	Authorities	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 31	

Hierarchical	Approach	

•  Single	CA	certifying	every	public	key	is	impractical	
•  Instead,	use	a	trusted	root	authority	
–  For	example,	Verisign	
–  Everybody	must	know	the	public	key	for	verifying	root	

authority’s	signatures	
•  Root	authority	signs	certificates	for	lower-level	

authorities,	lower-level	authorities	sign	certificates	
for	individual	networks,	and	so	on	
–  Instead	of	a	single	certificate,	use	a	certificate	chain	

•  sigVerisign(“AnotherCA”,	PKAnotherCA),	sigAnotherCA(“Alice”,	PKA)	

– What	happens	if	root	authority	is	ever	compromised?	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 32	

You	encounter	this	every	day…	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 33	

SSL/TLS:	Encryption	&	authentication	for	connections	
	
(More	on	this	later!)	

Example	of	a	Certificate	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 34	

X.509	Certificate	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 35	

Many	Challenges…		
[more	examples	in	section]	

•  Hash	collisions	
•  Weak	security	at	CAs	
– Allows	attackers	to	issue	rogue	certificates	

•  Users	don’t	notice	when	attacks	happen	
– We’ll	talk	more	about	this	later	

•  Etc…	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 36	

Colliding	Certificates	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 37	

serial	number	

validity	period	

real	cert	
domain	name	

real	cert	
RSA	key	

X.509	extensions	

signature	
identical	bytes	

(copied	from	real	cert)	

collision	bits	
(computed)	

chosen	prefix	
(difference)	

serial	number	

validity	period	

rogue	cert	
domain	name	

???	

X.509	extensions	

signature	

set	by	
the	CA	

Hash	to	the	same	
MD5	value!	

Valid	for	both	certificates!	

[Sotirov	et	al.	“Rogue	Certificates”]	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 38	

Attacking	CAs	
	
Security	of	DigiNotar	
servers:	
•  All	core	certificate	

servers	controlled	by	
a	single	admin	
password	
(Pr0d@dm1n)	

•  Software	on	public-
facing	servers	out	of	
date,	unpatched	

•  No	anti-virus	(could	
have	detected	attack)	

	

Consequences	

•  Attacker	needs	to	first	divert	users	to	an	attacker-
controlled	site	instead	of	Google,	Yahoo,	Skype,	
but	then…	
–  For	example,	use	DNS	to	poison	the	mapping	of	

mail.yahoo.com	to	an	IP	address	

•  …	“authenticate”	as	the	real	site	
•  …	decrypt	all	data	sent	by	users	
–  Email,	phone	conversations,	Web	browsing	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 39	

More	Rogue	Certs	

•  In	Jan	2013,	a	rogue	*.google.com	certificate																	
was	issued	by	an	intermediate	CA	that	gained																		
its	authority	from	the	Turkish	root	CA	TurkTrust	
–  TurkTrust	accidentally	issued	intermediate	CA	certs		to	

customers	who	requested	regular	certificates	
–  Ankara	transit	authority	used	its	certificate	to	issue	a	fake	

*.google.com	certificate	in	order	to	filter	SSL	traffic	from	its	
network	

•  This	rogue	*.google.com	certificate	was	trusted	by	
every	browser	in	the	world	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 40	

Certificate	Revocation	

•  Revocation	is	very	important	
•  Many	valid	reasons	to	revoke	a	certificate	
–  Private	key	corresponding	to	the	certified	public	key	has	

been	compromised	
–  User	stopped	paying	his	certification	fee	to	this	CA	and	

CA	no	longer	wishes	to	certify	him	
–  CA’s	private	key	has	been	compromised!	

•  Expiration	is	a	form	of	revocation,	too	
– Many	deployed	systems	don’t	bother	with	revocation	
–  Re-issuance	of	certificates	is	a	big	revenue	source	for	

certificate	authorities	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 41	

Certificate	Revocation	Mechanisms	

•  Certificate	revocation	list	(CRL)	
–  CA	periodically	issues	a	signed	list	of	revoked	
certificates	
•  Credit	card	companies	used	to	issue	thick	books	of	
canceled	credit	card	numbers	

–  Can	issue	a	“delta	CRL”	containing	only	updates	
•  Online	revocation	service	
– When	a	certificate	is	presented,	recipient	goes	to	a	
special	online	service	to	verify	whether	it	is	still	valid	
•  Like	a	merchant	dialing	up	the	credit	card	processor	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 42	

Attempt	to	Fix	CA	Problems:	Convergence	

•  Background	observation:	
–  Attacker	will	have	a	hard	time	mounting	man-in-the-

middle	attacks	against	all	clients	around	the	world	

•  Basic	idea:	
–  Lots	of	nodes	around	the	world	obtaining	SSL/TLS	

certificates	from	servers	
–  Check	responses	across	servers,	and	also	observe	

unexpected	changes	from	existing	certificates	
	

http://convergence.io/		

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 43	

Keybase	

•  Basic	idea:	
–  Rely	on	existing	trust	of	a	person’s	ownership	of	other	

accounts	(e.g.,	Twitter,	GitHub,	website)	
–  Each	user	publishes	signed	proofs	to	their	linked	account	

	

																																																																https://keybase.io/		

	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 44	

SSL/TLS	

•  Secure	Sockets	Layer	and	Transport	Layer	Security	
protocols	
–  Same	protocol	design,	different	crypto	algorithms	

•  De	facto	standard	for	Internet	security	
–  “The	primary	goal	of	the	TLS	protocol	is	to	provide	

privacy	and	data	integrity	between	two	communicating	
applications”	

•  Deployed	in	every	Web	browser;	also	VoIP,	
payment	systems,	distributed	systems,	etc.	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 45	

TLS	Basics	

•  TLS	consists	of	two	protocols	
–  Familiar	pattern	for	key	exchange	protocols	

•  Handshake	protocol	
– Use	public-key	cryptography	to	establish	a	shared	
secret	key	between	the	client	and	the	server	

•  Record	protocol	
– Use	the	secret	symmetric	key	established	in	the	
handshake	protocol	to	protect	communication	
between	the	client	and	the	server	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 46	

Basic	Handshake	Protocol	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 47	

C	

ClientHello	

S	

Client	announces	(in	plaintext):	
•  Protocol	version	it	is	running	
•  Cryptographic	algorithms	it	supports	
•  Fresh,	random	number	

Basic	Handshake	Protocol	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 48	

C	

C,	versionc,	suitesc,	Nc	

ServerHello	

S	
Server	responds	(in	plaintext)	with:	
•  Highest	protocol	version	supported	by	

both	the	client	and	the	server	
•  Strongest	cryptographic	suite	selected	

from	those	offered	by	the	client	
•  Fresh,	random	number	

Basic	Handshake	Protocol	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 49	

C	

versions,	suites,	Ns,	
ServerKeyExchange	

S	Server	sends	his	public-key	certificate	
containing	either	his	RSA,	or	
his	Diffie-Hellman	public	key		
(depending	on	chosen	crypto	suite)	

C,	versionc,	suitesc,	Nc	

Basic	Handshake	Protocol	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 50	

C	

versions,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc,	suitesc,	Nc	

ClientKeyExchange	

The	client	generates	secret	key	material	
and	sends	it	to	the	server	encrypted	with	
the	server’s	public	key	(if	using	RSA)	

Basic	Handshake	Protocol	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 51	

C	

versions,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

C	and	S	share	
secret	key	material	(secretc)	at	this	point	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

Finished	Finished	

Record	of	all	sent	and		
received	handshake	messages	

“Core”	SSL	3.0	Handshake	(Not	TLS)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 52	

C	

versions=3.0,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc=3.0,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

C	and	S	share	
secret	key	material	(secretc)	at	this	point	

switch	to	keys	derived	
from	secretc	,	Nc	,	Ns	

Finished	Finished	

Version	Rollback	Attack	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 53	

C	

Versions=2.0,	suites,	Ns,	
certificate,	
“ServerHelloDone”	

S	

C,	versionc=2.0,	suitesc,	Nc	

{Secretc}PKs						if	using	RSA	

C	and	S	end	up	communicating	using	SSL	2.0		
(weaker	earlier	version	of	the	protocol	that	

does	not	include	“Finished”	messages)	

Server	is	fooled	into	thinking	he	is	
communicating	with	a	client	who	
supports	only	SSL	2.0	

“Chosen-Protocol”	Attacks	

•  Why	do	people	release	new	versions	of	security	protocols?	
Because	the	old	version	got	broken!	

•  New	version	must	be	backward-compatible	
–  Not	everybody	upgrades	right	away	

•  Attacker	can	fool	someone	into	using	the	old,	broken	version	
and	exploit	known	vulnerability	
–  Similar:	fool	victim	into	using	weak	crypto	algorithms	

•  Defense	is	hard:	must	authenticate	version	in	early	designs	
•  Many	protocols	had	“version	rollback”	attacks	

–  SSL,	SSH,	GSM	(cell	phones)	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 54	

Version	Check	in	SSL	3.0	

10/31/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 55	

C	

versions=3.0,	suites,	Ns,	
certificate	for	PKs,	
“ServerHelloDone”	

S	

C,	versionc=3.0,	suitesc,	Nc	

{versionc,	secretc}PKs	

C	and	S	share	
secret	key	material	secretc	at	this	point	

“Embed”	version	
number	into	secret	

Check	that	received	version	is	equal	
to	the	version	in	ClientHello		

switch	to	key	derived	
from	secretc,	Nc,	Ns	

switch	to	key	derived	
from	secretc,	Nc,	Ns	

