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Alice	and	Bob	

•  Archetypical	characters	
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Alice	 Bob	

Mallory		
(is	malicious)	

Eve	
(eavesdrops)	



Common	Communication	Security	Goals	
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Confidentiality	of	data:	
Prevent	exposure	of	
information	
Integrity	of	data:	
Prevent	modification	of	
information	

Alice	

Bob	

Adversary	

Authenticity	:	Is	this	really		
Bob	I’m	talking	to?	



History	

•  Substitution	Ciphers		
–  Caesar	Cipher	

•  Transposition	Ciphers	
•  Codebooks	
•  Machines	

•  Recommended	Reading:		The	Codebreakers	by	
David	Kahn	and	The	Code	Book	by	Simon	Singh.		
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History:	Caesar	Cipher	(Shift	Cipher)	

•  Plaintext	letters	are 	 																 	 	 	 	 	 							
replaced	with	letters	 	 	 	 	 	 	 	 	 																		
a	fixed	shift	away	in	 	 	 	 	 	 	 	 																				
the	alphabet.	

•  Example:	
–  Plaintext:	The quick brown fox jumps over the lazy dog
–  Key:	Shift	3	

	ABCDEFGHIJKLMNOPQRSTUVWXYZ
DEFGHIJKLMNOPQRSTUVWXYZABC

–  Ciphertext:	WKHTX LFNEU RZQIR AMXPS VRYHU WKHOD CBGRJ 
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History:	Caesar	Cipher	(Shift	Cipher)	

•  ROT13:	shift	13	(encryption	and	decryption:	same	operation)	

•  What	is	the	key	space?	
– 26	possible	shifts.	

•  How	to	attack	shift	ciphers?	
– Brute	force.	
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History:	Substitution	Cipher	

•  Superset	of	shift	ciphers:	each	letter	is	
substituted	for	another	one.	

•  Add	a	secret	key	
•  Example:	
– Plaintext:	ABCDEFGHIJKLMNOPQRSTUVWXYZ
– Cipher:					ZEBRASCDFGHIJKLMNOPQTUVWXY

•  “State	of	the	art”	for	thousands	of	years	
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History:	Substitution	Cipher	

•  What	is	the	key	space?		
•  How	to	attack?	
– Frequency	analysis.	

Trigrams:	
1. the
2. and
3. tha
4. ent
5. ing

Bigrams:	
th 1.52% en 0.55% ng 0.18% 
he 1.28% ed 0.53% of 0.16% 
in 0.94% to 0.52% al 0.09% 
er 0.94% it 0.50% de 0.09% 
an 0.82% ou 0.50% se 0.08% 
re 0.68% ea 0.47% le 0.08% 
nd 0.63% hi 0.46% sa 0.06% 
at 0.59% is 0.46% si 0.05% 
on 0.57% or 0.43% ar 0.04% 
nt 0.56% ti 0.34% ve 0.04%
ha 0.56% as 0.33% ra 0.04% 
es 0.56% te 0.27% ld 0.02% 
st 0.55% et 0.19% ur 0.02% 

	
6. ion
7. tio
8. for 
9. nde
10. has
	

11.  nce
12.  edt
13.  tis 
14.  oft
15.  sth
	

26!	~=	2^88	
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History:	Enigma	Machine	
Uses	rotors	(substitution	
cipher)	that	change	position	
after	each	key.	

Key	=	initial	setting	of	rotors	
	

Key	space?	
26^n	for	n	rotors	
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Kerckhoff’s	Principle	

•  Security	of	a	cryptographic	object	should	
depend	only	on	the	secrecy	of	the	secret	
(private)	key.	

•  Security	should	not	depend	on	the	secrecy	
of	the	algorithm	itself	(“security	by	
obscurity”).	
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How	Cryptosystems	Work	Today	

• Public	algorithms	(Kerckhoff’s	
Principle)	
• Security	proofs	based	on	
assumptions	(not	this	course)	

• Don’t	roll	your	own!	
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How	Cryptosystems	Work	Today	

•  Layered	approach:	
– Cryptographic	primitives,	like	block	
ciphers,	stream	ciphers,	hash	functions,	
and	one-way	trapdoor	permutations	
– Cryptographic	protocols,	like	CBC	mode	
encryption,	CTR	mode	encryption,	HMAC	
message	authentication	
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Flavors	of	Cryptography	

•  Symmetric	cryptography	
– Both	communicating	parties	have	access	to	a	
shared	random	string	K,	called	the	key.	

	

•  Asymmetric	cryptography	
– Each	party	creates	a	public	key	pk	and	a	secret	
key	sk.			
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Confidentiality:	Basic	Problem	

Goal:	send	a	message	confidentially.	
Given:	both	parties	already	know	the	
same	secret.	
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? 
----- ----- ----- 



One-Time	Pad	
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=	10111101…	
-----	-----	-----	

=	00110010…	 00110010…	=	



One-Time	Pad	
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=	10111101…	
-----	-----	-----	

=	00110010…	
	10001111…		⊕	

00110010…	=	
	⊕	

			10111101…	

Key	is	a	random	bit	sequence	
as	long	as	the	plaintext	

Encrypt	by	bitwise	XOR	of	
plaintext	and	key:	
ciphertext	=	plaintext	⊕	key	

Decrypt	by	bitwise	XOR	of	
ciphertext	and	key:	
ciphertext	⊕	key	=		
(plaintext	⊕	key)	⊕	key	=	
plaintext	⊕	(key	⊕	key)	=	
plaintext		

Cipher	achieves	perfect	secrecy	if	and	only	if																											
there	are	as	many	possible	keys	as	possible	plaintexts,												
and	every	key	is	equally	likely			(Claude	Shannon,	1949)	



Advantages	of	One-Time	Pad	

•  Easy	to	compute	
–  Encryption	and	decryption	are	the	same	operation	
– Bitwise	XOR	is	very	cheap	to	compute	

•  As	secure	as	theoretically	possible	
– Given	a	ciphertext,	all	plaintexts	are	equally	likely,	
regardless	of	attacker’s	computational	resources	

– …as	long	as	the	key	sequence	is	truly	random	
•  True	randomness	is	expensive	to	obtain	in	large	quantities	

– …as	long	as	each	key	is	same	length	as	plaintext	
•  But	how	does	sender	communicate	the	key	to	receiver?	
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Problems	with	One-Time	Pad	

•  Key	must	be	as	long	as	the	plaintext	
–  Impractical	in	most	realistic	scenarios	
– Still	used	for	diplomatic	and	intelligence	traffic	

•  Insecure	if	keys	are	reused	
– Attacker	can	obtain	XOR	of	plaintexts	

•  Does	not	guarantee	integrity	
– One-time	pad	only	guarantees	confidentiality	
– Attacker	cannot	recover	plaintext,	but	can	easily	
change	it	to	something	else	
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Dangers	of	Reuse	
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=	00000000…	
-----	-----	-----	

=	00110010…	
	00110010…		⊕	

00110010…	=	
	⊕	

			00000000…	P1	
C1	

=	11111111…	
-----	-----	-----	

=	00110010…	
	11001101…		⊕	

P2	
C2	

Learn	relationship	between	plaintexts	
C1⊕C2	=	(P1⊕K)⊕(P2⊕K)	=		
(P1⊕P2)⊕(K⊕K)	=	P1⊕P2	



No	Integrity	
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=	10111101…	
-----	-----	-----	

=	00110010…	
	10001111…		⊕	

00110010…	=	
	⊕	

			10111101…	

Key	is	a	random	bit	sequence	
as	long	as	the	plaintext	

Encrypt	by	bitwise	XOR	of	
plaintext	and	key:	
ciphertext	=	plaintext	⊕	key	

Decrypt	by	bitwise	XOR	of	
ciphertext	and	key:	
ciphertext	⊕	key	=		
(plaintext	⊕	key)	⊕	key	=	
plaintext	⊕	(key	⊕	key)	=	
plaintext		

0 

0 



Reducing	Key	Size	

•  What	to	do	when	it	is	infeasible	to	pre-share	huge	
random	keys?	
– When	one-time	pad	is	unrealistic…	

•  Use	special	cryptographic	primitives:																						
block	ciphers,	stream	ciphers	
–  Single	key	can	be	re-used	(with	some	restrictions)	
–  Use	them	in	ways	that	provide	integrity	
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Stream	Ciphers	

•  One-time	pad:	
Ciphertext(Key,Message)=Message⊕Key	
– Key	must	be	a	random	bit	sequence	as	
long	as	message	

•  Idea:	replace	“random”	with	“pseudo-
random”	
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Stream	Ciphers	

•  One-time	pad:	
Ciphertext(Key,Message)=Message	⊕	Key	

•  Stream	cipher:		
Ciphertext(Key,Message)=	
	 	 	 	 	 	 	 	 	Message	⊕	PRNG(Key)	
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Stream	Ciphers	

•  One	time	pad,	replace	“random”	with	“pseudo-
random”	
–  Use	a	pseudo-random	number	generator	(PRNG)	
–  PRNG	takes	a	short,	truly	random	secret	seed	and	

expands	it	into	a	long	“random-looking”	sequence	
•  E.g.,	128-bit	seed	into	a	106-bit		
			pseudo-random	sequence	
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No	efficient	algorithm	can	tell	
this	sequence	from	truly	random	



Block	Ciphers	

•  Operates	on	a	single	chunk	(“block”)	of	plaintext	
–  For	example,	64	bits	for	DES,	128	bits	for	AES	
–  Each	key	defines	a	different	permutation	
–  Same	key	is	reused	for	each	block	(can	use	short	keys)	
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Plaintext	

Ciphertext	

block	
cipher	Key	



Permutations	
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0 
1 
2 
3 

0 
1 
2 
3 

•  For	N-bit	input,	2N!	possible	permutations	
•  Idea	for	how	to	use	a	keyed	permutation:	split	plaintext	into	

blocks;	for	each	block	use	secret	key	to	pick	a	permutation	
–  Without	the	key,	permutation	should	“look	random”	



Block	Cipher	Security	

•  Result	should	look	like	a	random	permutation	on	
the	inputs	
–  Recall:		not	just	shuffling	bits.		N-bit	block	cipher	

permutes	over	2N	inputs.	

•  Only	computational	guarantee	of	secrecy	
–  Not	impossible	to	break,	just	very	expensive	

•  If	there	is	no	efficient	algorithm	(unproven	assumption!),	then	
can	only	break	by	brute-force,	try-every-possible-key	search	

–  Time	and	cost	of	breaking	the	cipher	exceed	the	value	
and/or	useful	lifetime	of	protected	information	
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Block	Cipher	Operation	(Simplified)	
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Block	of	plaintext	

S	 S	 S	 S	

S	 S	 S	 S	

S	 S	 S	 S	

Key	

Add	some	secret	key	bits	
to	provide	confusion	

Each	S-box	transforms		
its	input	bits	in	a		
“random-looking”	way		
to	provide	diffusion		
(spread	plaintext	bits		
throughout	ciphertext)	

repeat	for	several	rounds	

Block	of	ciphertext	
Procedure	must	be	reversible		

(for	decryption)	



Standard	Block	Ciphers	

•  DES:	Data	Encryption	Standard	
–  Feistel	structure:	builds	invertible	function	using	non-

invertible	ones	
–  Invented	by	IBM,	issued	as	federal	standard	in	1977	
–  64-bit	blocks,	56-bit	key	+	8	bits	for	parity	
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DES	and	56	bit	keys	

•  56	bit	keys	are	quite	short	
•  1999:		EFF	DES	Crack	+	distributed	
machines	
– <	24	hours	to	find	DES	key	

• DES	--->	3DES	
– 3DES:	DES	+	inverse	DES	+	DES	
(with	2	or	3	diff	keys)	
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DES	and	56	bit	keys	

•  56	bit	keys	are	quite	short	

•  1999:		EFF	DES	Crack	+	distributed	machines	
–  <	24	hours	to	find	DES	key	

•  DES	--->	3DES	
–  3DES:	DES	+	inverse	DES	+	DES	(with	2	or	3	diff	keys)	
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Standard	Block	Ciphers	

•  DES:	Data	Encryption	Standard	
–  Feistel	structure:	builds	invertible	function	using	non-

invertible	ones	
–  Invented	by	IBM,	issued	as	federal	standard	in	1977	
–  64-bit	blocks,	56-bit	key	+	8	bits	for	parity	
	

•  AES:	Advanced	Encryption	Standard	
–  New	federal	standard	as	of	2001	

•  NIST:	National	Institute	of	Standards	&	Technology	
–  Based	on	the	Rijndael	algorithm	

•  Selected	via	an	open	process	
–  128-bit	blocks,	keys	can	be	128,	192	or	256	bits	
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Block	Ciphers	Work	on	Fixed	Length	
Blocks	of	Message	

• How	do	you	encrypt	a	
short	message?	
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Encrypting	a	Large	Message	

•  So,	we’ve	got	a	good	block	cipher,	but	our	
plaintext	is	larger	than	128-bit	block	size	

	

•  What	should	we	do?	
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128-bit	plaintext	
(arranged	as	4x4	array	of	8-bit	bytes)	

128-bit	ciphertext	



Electronic	Code	Book	(ECB)	Mode	
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plaintext	

ciphertext	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

key	 key	 key	 key	 key	

•  Identical	blocks	of	plaintext	produce	identical	blocks	of	ciphertext	
•  No	integrity	checks:	can	mix	and	match	blocks	



Information	Leakage	in	ECB	Mode	

10/19/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 36	

Encrypt	in	ECB	mode	

[Wikipedia]	



Cipher	Block	Chaining	(CBC)	Mode:	Encryption	
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Sent	with	ciphertext	
(preferably	encrypted)	

plaintext	

ciphertext	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

⊕	Initialization	
vector	
(random)	

⊕	 ⊕	 ⊕	key	 key	 key	 key	

•  Identical	blocks	of	plaintext	encrypted	differently	
•  Last	cipherblock	depends	on	entire	plaintext	

•  Still	does	not	guarantee	integrity	



CBC	Mode:	Decryption	
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plaintext	

ciphertext	

decrypt	 decrypt	 decrypt	 decrypt	

⊕	Initialization	
vector	 ⊕	 ⊕	 ⊕	key	 key	 key	 key	



ECB	vs.	CBC	
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AES	in	ECB	mode	 AES	in	CBC	mode	

Similar	plaintext	
blocks	produce	
similar	ciphertext	
blocks	(not	good!)	

[Picture	due	to	Bart	Preneel]	



CBC	and	Electronic	Voting	
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Initialization	
vector	
(supposed	to	
	be	random)	

plaintext	

ciphertext	

DES	 DES	 DES	 DES	

⊕	 ⊕	 ⊕	 ⊕	

Found	in	the	source	code	for	Diebold	voting	machines:	 
DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data, 
             totalSize, DESKEY, NULL, DES_ENCRYPT) 

key	 key	 key	 key	



Counter	Mode	(CTR):	Encryption	
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ctr	 ctr+1	 ctr+2	 ctr+3	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

Initial	ctr	
(random)	

⊕ ⊕ ⊕ ⊕pt	pt		 pt	 pt	

Key	 Key	 Key	 Key	

ciphertext	

•  Identical	blocks	of	plaintext	encrypted	differently	
•  Still	does	not	guarantee	integrity;	Fragile	if	ctr	repeats	



Counter	Mode	(CTR):	Decryption	
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ct	 ct	 ct	ct	

ctr	 ctr+1	 ctr+2	 ctr+3	

block	
cipher	

block	
cipher	

block	
cipher	

block	
cipher	

Initial	ctr	

⊕	 ⊕	 ⊕	 ⊕	
pt	 pt	 pt	 pt	

Key	 Key	 Key	 Key	



When	is	an	Encryption	Scheme	“Secure”?	

•  Hard	to	recover	the	key?	
– What	if	attacker	can	learn	plaintext	without	learning	the	

key?	

•  Hard	to	recover	plaintext	from	ciphertext?	
– What	if	attacker	learns	some	bits	or	some	function	of	

bits?	

•  Fixed	mapping	from	plaintexts	to	ciphertexts?	
– What	if	attacker	sees	two	identical	ciphertexts	and	infers	

that	the	corresponding	plaintexts	are	identical?	
–  Implication:	encryption	must	be	randomized	or	stateful	
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How	Can	a	Cipher	Be	Attacked?	

•  Attackers	knows	ciphertext	and	encryption	algthm	
– What	else	does	the	attacker	know?	Depends	on	the	

application	in	which	the	cipher	is	used!	
	

•  Ciphertext-only	attack	
•  KPA:	Known-plaintext	attack	(stronger)	
–  Knows	some	plaintext-ciphertext	pairs	

•  CPA:	Chosen-plaintext	attack	(even	stronger)	
–  Can	obtain	ciphertext	for	any	plaintext	of	his	choice	

•  CCA:	Chosen-ciphertext	attack	(very	strong)	
–  Can	decrypt	any	ciphertext	except	the	target	

	
10/19/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 44	



Chosen	Plaintext	Attack	
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Crook	#1	changes	
his	PIN	to	a	number	
of	his	choice	

cipher(key,PIN)	

PIN	is	encrypted	and	
transmitted	to	bank	

Crook	#2	eavesdrops	
on	the	wire	and	learns	
ciphertext	corresponding	
to	chosen	plaintext	PIN	

…	repeat	for	any	PIN	value	



Very	Informal	Intuition	

•  Security	against	chosen-plaintext	attack	(CPA)	
–  Ciphertext	leaks	no	information	about	the	plaintext	
–  Even	if	the	attacker	correctly	guesses	the	plaintext,	he	

cannot	verify	his	guess	
–  Every	ciphertext	is	unique,	encrypting	same	message	

twice	produces	completely	different	ciphertexts	

•  Security	against	chosen-ciphertext	attack	(CCA)	
–  Integrity	protection	–	it	is	not	possible	to	change	the	

plaintext	by	modifying	the	ciphertext	
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Minimum	security		
requirement	for	a		
modern	encryption	scheme	



Why	Hide	Everything?	

•  Leaking	even	a	little	bit	of	information	about	the	
plaintext	can	be	disastrous	

•  Electronic	voting	
–  2	candidates	on	the	ballot	(1	bit	to	encode	the	vote)	
–  If	ciphertext	leaks	the	parity	bit	of	the	encrypted	

plaintext,	eavesdropper	learns	the	entire	vote	

•  Also,	want	a	strong	definition,	that	implies	other	
definitions	(like	not	being	able	to	obtain	key)	
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