
CSE	484	/	CSE	M	584:		Computer	Security	and	Privacy	
	

Software	Security:		
Miscellaneous	

Fall	2016	
	

Adam	(Ada)	Lerner	
lerner@cs.washington.edu	

Thanks	to	Franzi	Roesner,	Dan	Boneh,	Dieter	Gollmann,	Dan	Halperin,	Yoshi	Kohno,	John	
Manferdelli,	John	Mitchell,	Vitaly	Shmatikov,	Bennet	Yee,	and	many	others	for	sample	
slides	and	materials	...	

Security	Mindset	Anecdote	

• Craigslist	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 2	

Security	Mindset	Anecdote	

• Craigslist	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 3	

Looking	Forward	

•  Lab	1	checkpoint	is	due	today	

•  Sploits	4-7	are	due	October	31	–	get	
working	–	a	crypto	homework	will	be	
emerging	before	they’re	due!	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 4	

Return-Oriented	Programming	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 5	

Run-Time	Checking:	StackGuard	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 6	

•  Embed	“canaries”	(stack	cookies)	in	stack	frames	and	verify	
their	integrity	prior	to	function	return	
–  Any	overflow	of	local	variables	will	damage	the	canary	

	
	

Top	of	
stack	

buf	 sfp	 ret	
addr	

Local	variables	 Pointer	to	
previous	
frame	

Frame	of	the	
calling	function	

Return	
execution	to	
this	address	

canary	

Defeating	StackGuard	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 7	

•  Suppose	program	contains	strcpy(dst,buf)	
where	attacker	controls	both	dst	and	buf	
– Example:	dst	is	a	local	pointer	variable	

buf	 sfp	 RET	

Return	execution	to	
this	address	

canary	dst	

sfp	 RET	canary	BadPointer,	attack	code	 &RET	

Overwrite	destination	of	strcpy	with	RET	position	
strcpy	will	copy		
BadPointer	here	

Function	Pointer	Overflow	

•  Attack:	overflow	a	function	pointer	so	that	it	
points	to	attack	code	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 8	

attack	code	

Buffer	with	attacker-supplied		
input	string	

Callback	
pointer	

Heap	

Legitimate	function	F	

overflow	

Answer	Q1	

•  Attack:	overflow	a	function	pointer	so	that	it	
points	to	attack	code	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 9	

attack	code	

Buffer	with	attacker-supplied		
input	string	

Callback	
pointer	

Heap	

Legitimate	function	F	

overflow	

PointGuard	

•  Idea:	encrypt	all	pointers	while	in	memory	
– Generate	a	random	key	when	program	is	executed	
–  Each	pointer	is	XORed	with	this	key	when	loaded	
from	memory	to	registers	or	stored	back	into	
memory	
•  Pointers	cannot	be	overflowed	while	in	registers	

•  Attacker	cannot	predict	the	target	program’s	
key	
–  Even	if	pointer	is	overwritten,	after	XORing	with	key	
it	will	dereference	to	a	“random”	memory	address	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 10	

Normal	Pointer	Dereference	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 11	

CPU	

Memory	 Pointer	
0x1234	 Data	

1.	Fetch	pointer	value	

0x1234	

2.	Access	data	referenced	by	pointer	

0x1234	 0x1340	

CPU	

Memory	
Corrupted	pointer	
0x1234	
0x1340	

Data	

1.	Fetch	pointer	value	

2.	Access	attack	code	referenced	
	by	corrupted	pointer	

Attack	
code	

[Cowan]	

PointGuard	Dereference	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 12	

[Cowan]	

CPU	

Memory	 Encrypted	pointer	
0x7239	 Data	

1.	Fetch	pointer		
				value	

0x1234	

2.	Access	data	referenced	by	pointer	0x1234	
Decrypt	

0x1234	 0x1340	

CPU	

Memory	
Corrupted	pointer	
0x7239	
0x1340	

Data	

2.	Access	random	address;	
				segmentation	fault	and	crash	

Attack	
code	

1.	Fetch	pointer		
				value	

0x9786	
Decrypt	

Decrypts	to	
random	value	

0x9786	

PointGuard	Issues	

• Answer	Q2	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 13	

PointGuard	Issues	

•  Must	be	very	fast	
–  Pointer	dereferences	are	very	common	

•  Compiler	issues	
– Must	encrypt	and	decrypt	only	pointers	
–  If	compiler	“spills”	registers,	unencrypted	pointer	values	

end	up	in	memory	and	can	be	overwritten	there	
•  Attacker	should	not	be	able	to	modify	the	key	
–  Store	key	in	its	own	non-writable	memory	page	

•  PG’d	code	doesn’t	mix	well	with	normal	code	
– What	if	PG’d	code	needs	to	pass	a	pointer	to	OS	kernel?	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 14	

ASLR:	Address	Space	Randomization	

•  Map	shared	libraries	to	a	random	location	in	
process	memory	
–  Attacker	does	not	know	addresses	of	executable	code	

•  Deployment	(examples)	
– Windows	Vista:	8	bits	of	randomness	for	DLLs	
–  Linux	(via	PaX):	16	bits	of	randomness	for	libraries	
–  Even	Android	
– More	effective	on	64-bit	architectures	

•  Other	randomization	methods	
–  Randomize	system	call	ids	or	instruction	set	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 15	

Example:	ASLR	in	Vista	

•  Booting	Vista	twice	loads	libraries	into	
different	locations:	

	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 16	

ASLR	Issues	

•  NOP	slides	and	heap	spraying	to	increase	
likelihood	for	custom	code	(e.g.	on	heap)	

•  Brute	force	attacks	or	memory	disclosures	to	
map	out	memory	on	the	fly	
– Disclosing	a	single	address	can	reveal	the	
location	of	all	code	within	a	library	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 17	

Other	Possible	Solutions	

•  Use	safe	programming	languages,	e.g.,	Java	
– What	about	legacy	C	code?	
–  (Note	that	Java	is	not	the	complete	solution)	

•  Static	analysis	of	source	code	to	find	overflows	
•  Dynamic	testing:	“fuzzing”	
•  LibSafe:	dynamically	loaded	library	that	intercepts	

calls	to	unsafe	C	functions	and	checks	that	there’s	
enough	space	before	doing	copies	
–  Also	doesn’t	prevent	everything	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 18	

Even	Modern	Systems	Don’t	Use	
These	Defenses!	

•  Embedded	systems	
– E.g.,	cars	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 19	

Beyond	Buffer	Overflows…	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 20	

Another	Type	of	Vulnerability	
•  Consider	this	code:	

•  Goal:		Open	only	regular	files	(not	symlink,	etc)	
•  What	can	go	wrong?	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 21	

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

TOCTOU	(Race	Condition)	
•  TOCTOU	==	Time	of	Check	to	Time	of	Use:	

•  Goal:		Open	only	regular	files	(not	symlink,	etc)	
•  Attacker	can	change	meaning	of	path	between	stat	

and	open	(and	access	files	they	shouldn’t)	
10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 22	

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

Another	Type	of	Vulnerability	

•  Consider	this	code:	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 23	

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

Integer	Overflow	and	Implicit	Cast	

•  Consider	this	code:	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 24	

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If	len	is	negative,	may	
copy	huge	amounts	
of	input	into	buf.	

Another	Example	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 25	

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from	www-inst.eecs.berkeley.edu—implflaws.pdf)	

Integer	Overflow	and	Implicit	Cast	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 26	

•  What	if	len	is	large	(e.g.,	len	=	0xFFFFFFFF)?	
•  Then	len	+	5	=	4	(on	many	platforms)	
•  Result:		Allocate	a	4-byte	buffer,	then	read	a	lot	of	

data	into	that	buffer.	

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

(from	www-inst.eecs.berkeley.edu—implflaws.pdf)	

Password	Checker	

•  Functional	requirements	
–  PwdCheck(RealPwd,	CandidatePwd)	should:	

•  Return	TRUE	if	RealPwd	matches	CandidatePwd	
•  Return	FALSE	otherwise		

–  RealPwd	and	CandidatePwd	are	both	8	characters	long	

•  Implementation	(like	TENEX	system)	

•  Clearly	meets	functional	description	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 27	

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
 for i = 1 to 8 do
 if (RealPwd[i] != CandidatePwd[i]) then
 return FALSE
 return TRUE

Attacker	Model	

•  Attacker	can	guess	CandidatePwds	through	some	
standard	interface	

•  Naive:		Try	all	2568	=	18,446,744,073,709,551,616	
possibilities	

•  Better:		Time	how	long	it	takes	to	reject	a	
CandidatePasswd.		Then	try	all	possibilities	for	first	
character,	then	second,	then	third,	
–  Total	tries:		256*8	=	2048	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 28	

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
 for i = 1 to 8 do
 if (RealPwd[i] != CandidatePwd[i]) then
 return FALSE
 return TRUE

Timing/Side	Channel	Attacks	

•  Assume	there	are	no	“typical”	bugs	in	the	software	
–  No	buffer	overflow	bugs	
–  No	format	string	vulnerabilities	
–  Good	choice	of	randomness	
–  Good	design	

•  The	software	may	still	be	vulnerable	to	timing	
attacks	
–  Software	exhibits	input-dependent	timings	

•  Complex	and	hard	to	fully	protect	against	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 29	

Other	Examples	

•  Plenty	of	other	examples	of	timings	attacks	
– AES	cache	misses	

•  AES	is	the	“Advanced	Encryption	Standard”	
•  It	is	used	in	SSH,	SSL,	IPsec,	PGP,	...	

– RSA	exponentiation	time	
•  RSA	is	a	famous	public-key	encryption	scheme	
•  It’s	also	used	in	many	cryptographic	protocols	and	
products	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 30	

Other	Side	Channels	

•  David	mentioned	telescope	+	camera	to	read	
bits	off	modem	lights	

•  Power	usage	
•  Sound	
•  Error	messages	
•  Facial	expressions,	tone	of	voice	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 31	

Randomness	Issues	

•  Many	applications	(especially	security	ones)	
require	randomness	

•  Explicit	uses:	
–  Generate	secret	cryptographic	keys	
–  Generate	random	initialization	vectors	for	encryption	

•  Other	“non-obvious”	uses:	
–  Generate	passwords	for	new	users	
–  Shuffle	the	order	of	votes	(in	an	electronic	voting	

machine)	
–  Shuffle	cards	(for	an	online	gambling	site)	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 32	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 33	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 34	

More	details:	“How	We	Learned	to	Cheat	at	Online	Poker:	A	Study	in	Software	Security”	
http://www.cigital.com/papers/download/developer_gambling.php			

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 35	

PS3	and	Randomness	

•  2010/2011:	Hackers	found/released	private	root	key	for	Sony’s	PS3	
•  Key	used	to	sign	software	–	now	can	load	any	software	on	PS3	

and	it	will	execute	as	“trusted”	
•  Due	to	bad	random	number:	same	“random”	value	used	to	sign	

all	system	updates	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 36	

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/		

PS3	and	Randomness	

•  Example	Current	Event	report	from	a	past	
iteration	of	484	
–  https://catalyst.uw.edu/gopost/conversation/kohno/
452868	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 37	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 38	

Other	Problems	
•  Key	generation	

–  Debian	removed	the	randomness	from	SSL,	creating	
vulnerable	keys	for	thousands	of	users/servers	

–  Undetected	for	2	years	(2006-2008)	

•  Live	CDs,	diskless	clients	
–  May	boot	up	in	same	state	every	time	

•  Virtual	Machines	
–  Save	state:		Opportunity	for	attacker	to	inspect	the	

pseudorandom	number	generator’s	state	
–  Restart:		May	use	same	“psuedorandom”	value	more	

than	once	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 39	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 40	

https://xkcd.com/221/		

Obtaining	Pseudorandom	Numbers	

•  For	security	applications,	want	“cryptographically	
secure	pseudorandom	numbers”	

•  Libraries	include	cryptographically	secure	
pseudorandom	number	generators	

•  Linux:	
–  /dev/random	
–  /dev/urandom	-	nonblocking,	possibly	less	entropy	

•  Internally:	
–  Entropy	pool	gathered	from	multiple	sources	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 41	

Where	do	(good)	random		
numbers	come	from?	

•  Humans:	keyboard,	mouse	input	
•  Timing:	interrupt	firing,	arrival	of	packets	on	
the	network	interface	

•  Physical	processes:	unpredictable	physical	
phenomena	

	

10/14/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 42	

