CSE 484 [CSE M 584: Computer Security and Privacy

Software Security:
Miscellaneous

Fall 2016

Adam (Ada) Lerner
lerner@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

Security Mindset Anecdote

* Craigslist

crai gShSt seattle-tacoma "™ see est sno kit tac oy sk engish [
nearby cl
post to classifieds community housing jobs bellingham
my account activites local news apts / housing accounting+finance bend
o artists lost+found housing swap admin / office LG
search craigslist childcare musicians housing wanted arch / engineering el
classes pets office / commercial art/ media / design east oregon
events politics parking / storage biotech / science eugens
event calendar . . fraser valley
general rideshare real estate for sale business / mgmt
D groups volunteers rooms / shared customer service amloops
10 11 12 13 14 15 16 . kelowna
rooms wanted education klamath falls
17 18 19 20 21 22 23 personals sublelts / temporary food / bev / hosp kootenays
24 25 26 27 28 29 30 strictly platonic vacation rentals general labor lewiston
women seeking men for sale human resources moses lake
10/14/16 CSE 484 | CSE M 584 - Fall 2016 2

Security Mindset Anecdote

Raye had recently evicted a tenant and cleaned out the rental.

The ad posted last weekend welcomed people to take for
free anything they wanted from the home. It has since
been pulled from the site, but not before the residence
was stripped of light fixtures, the hot water heater and
the kitchen sink.

Neighbors said they saw strangers hauling items away,
apparently looking for salvage material.

Even the front door and a vinyl window were pilfered,
Raye said.

Looking Forward

* Lab 1 checkpoint is due today

* Sploits 4-7 are due October 31 - get
working — a crypto homework will be

emerging before they’re due!

Return-Oriented Programming

Sahwday, Jamay 6, 2007

Daily Blog Tips awarded th

Laft pveek Darren gse, the Daily' Blog Tips is Ren
from the ambus atfidcting] a vast audierjce foll
Problogger blag, of | bloggers| |who |are imp
annduced the winners of looking to dwprove their

latest Group Writinfe] blogs. Whin abput The
Profect called ' Reviews\ the puecess of) jlog that
and Peedictions"/ Among \Da !q ‘ Ei rela
tha
"“
“l/

Re t|uir|n o|r |ien |ted Pro|g|ra |mm | ing

10/14/16 CSE 484 | CSE M 584 - Fall 2016

Run-Time Checking: StackGuard

* Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

e
buf sfp aﬁér Top of
stack
N g \ Y J L Y J
Local variables PS)IJQ\E%JSO excla_:{cet}tlfgnn to

frame this address

10/14/16 CSE 484 | CSE M 584 - Fall 2016

Defeating StackGuard

* Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf

— Example: dst is a local pointer variable

H_I

Return execution to
this address

\/
BadPointer, attack code &RET
A

_
Overwrite destination of strcpy with RET positiyé

/ strcpy will copy
BadPointer here

10/14/16 CSE 484 | CSE M 584 - Fall 2016

Function Pointer Overflow

* Attack: overflow a function pointer so that it
points to attack code

Buffer with attacker-supplied Callback
input string pointer
~ — Y4 A N\
Heap attack code overflow

l

Legitimate function F

10/14/16 CSE 484 | CSE M 584 - Fall 2016 8

Answer Q1

* Attack: overflow a function pointer so that it
points to attack code

Buffer with attacker-supplied Callback
input string pointer
~ — Y4 A N\
Heap attack code overflow

l

Legitimate function F

10/14/16 CSE 484 | CSE M 584 - Fall 2016 9

PointGuard

* |dea: encrypt all pointers while in memory
— Generate a random key when program is executed

— Each pointer is XORed with this key when loaded
from memory to registers or stored back into
memory

* Pointers cannot be overflowed while in registers

* Attacker cannot predict the target program’s
key

— Even if pointer is overwritten, after XORing with key
it will dereference to a “random’” memory address

10/14/16 CSE 484 | CSE M 584 - Fall 2016 10

[Cowan]

Normal Pointer Dereference

Memory

Memory

10/14/16

1. Fetch pointer value

CPU

2. Access data referenced by pointer

1. Fetch pointer value

1

X

Pointer

0X1234 Data
0x1234

2. Access attack code referenced
by corrupted pointer

Corruptled pointer
TTOx1234| Data AtzlaCk
0X1340 code
0X1234 0X1340

CSE 484 | CSE M 584 - Fall 2016 1

[Cowan]

PointGuard Dereference

CPU
A‘x1234

1. Fetch pointer 2. Access data referenced by pointer
value Decrypt
2}
Encryptgd pointer
Memory 0x7239 Data
0X1234
Decrypts to
GRS 2. Access random address;
0X9786 segmentation fault and crash
1. Fetch pointer
value Decrypt
Corrupted pointer Attack T
Memor TTOX72390 Data
€mo y 0x1340 code
0X1234 0x1340 0x9786

10/14/16 CSE 484 | CSE M 584 - Fall 2016 12

PointGuard Issues

*Answer Q2

10/14/16 CSE 484 | CSE M 584 - Fall 2016

PointGuard Issues

Must be very fast

— Pointer dereferences are very common
* Compilerissues

— Must encrypt and decrypt only pointers

— If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

Attacker should not be able to modify the key
— Store key in its own non-writable memory page

PG’d code doesn’t mix well with normal code
— What if PG’d code needs to pass a pointer to OS kernel?

10/14/16 CSE 484 | CSE M 584 - Fall 2016 14

ASLR: Address Space Randomization

* Map shared libraries to a random location in
process memory
— Attacker does not know addresses of executable code
* Deployment (examples)
— Windows Vista: 8 bits of randomness for DLLs
— Linux (via PaX): 16 bits of randomness for libraries
— Even Android
— More effective on 64-bit architectures
* Other randomization methods
— Randomize system call ids or instruction set

10/14/16 CSE 484 | CSE M 584 - Fall 2016 15

Example: ASLR in Vista

* Booting Vista twice loads libraries into
different locations:

10/14/16

htlanman.dll 06D 7F0000 | Microsoft® Lan Manager
ntmarta. dll 075370000 | Windows NT MARTA provider
ntshrul. dll Ox6F2C0000 | Shell extensions for sharing
ole32.dll 0x76160000 | Microsoft OLE for Windows
htlanman. dll UxeDAS0000 | Microsoft® Lan Manager
htmarta.dll Ox/5660000 | Windows NT MARTA provider
htshrul. dll 0x6D3D0000 | Shell extensions for sharing
ole32.dll 0x763C0000 | Microsoft OLE for Windows

CSE 484 | CSE M 584 - Fall 2016

16

ASLR Issues

* NOP slides and heap spraying to increase
likelihood for custom code (e.g. on heap)

* Brute force attacks or memory disclosures to
map out memory on the fly

— Disclosing a single address can reveal the
location of all code within a library

10/14/16 CSE 484 | CSE M 584 - Fall 2016 17

Other Possible Solutions

* Use safe programming languages, e.g., Java
— What about legacy C code?
— (Note that Java is not the complete solution)

+ Static analysis of source code to find overflows
* Dynamic testing: “fuzzing”

* LibSafe: dynamically loaded library that intercepts
calls to unsafe C functions and checks that there’s
enough space before doing copies

— Also doesn’t prevent everything

10/14/16 CSE 484 | CSE M 584 - Fall 2016 18

Even Modern Systems Don’t Use
These Defenses!

* Embedded systems
—E.g., cars

10/14/16 CSE 484 | CSE M 584 - Fall 2016

Beyond Buffer Overflows...

10/14/16 CSE 484 | CSE M 584 - Fall 2016

Another Type of Vulnerability

e Consider this code:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O RDONLY);

}

* Goal: Open only regular files (not symlink, etc)
* What can go wrong?

TOCTOU (Race Condition)

e TOCTOU ==Time of Check to Time of Use:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");

return -1;

}
return open(path, O RDONLY);

}
* Goal: Open only regular files (not symlink, etc)

* Attacker can change meaning of path between stat
and open (and access files they shouldn’t)

Another Type of Vulnerability

e Consider this code:

char buf[80];
void vulnerable() {

}

int len = read int from network();

char *p = read string from network();

if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

Integer Overflow and Implicit Cast

e Consider this code: If len is negative, may
copy huge amounts

eliizns S| gL ; of input into buf.

void vulnerable() {

int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

10/14/16

Another Example

size t len = read int from network();

char *buf;
buf = malloc(len+5);

read(fd, buf, len);

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)
CSE 484 | CSE M 584 - Fall 2016

25

Integer Overflow and Implicit Cast

size t len = read int from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

* What if lenis large (e.g., len = oxFFFFFFFF)?
* Thenlen + 5 =4 (on many platforms)

* Result: Allocate a 4-byte buffer, then read a lot of
data into that bufter.

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)
10/14/16 CSE 484 | CSE M 584 - Fall 2016 26

Password Checker

* Functional requirements

— PwdCheck(RealPwd, CandidatePwd) should:
 Return TRUE if RealPwd matches CandidatePwd
 Return FALSE otherwise

— RealPwd and CandidatePwd are both 8 characters long
* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

* (learly meets functional description

10/14/16 CSE 484 | CSE M 584 - Fall 2016

27

Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Tryall 2568 =18,446,744,073,709,551,616
possibilities

* Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then thirq,

— Total tries: 256*8 = 2048

10/14/16 CSE 484 | CSE M 584 - Fall 2016

28

Timing/Side Channel Attacks

* Assume there are no “typical” bugs in the software
— No buffer overflow bugs
— No format string vulnerabilities
— Good choice of randomness
— Good design
* The software may still be vulnerable to timing
attacks
— Software exhibits input-dependent timings

* Complex and hard to fully protect against

10/14/16 CSE 484 | CSE M 584 - Fall 2016 29

Other Examples

* Plenty of other examples of timings attacks

— AES cache misses
* AES is the “Advanced Encryption Standard”
 Itisusedin SSH, SSL, IPsec, PGP, ...

— RSA exponentiation time

* RSAis a famous public-key encryption scheme

* It’s also used in many cryptographic protocols and
products

10/14/16 CSE 484 | CSE M 584 - Fall 2016

30

Other Side Channels

David mentioned telescope + camera to read
bits off modem lights

Power usage

Sound

Error messages

Facial expressions, tone of voice

Randomness Issues

* Many applications (especially security ones)
require randomness

* Explicit uses:
— Generate secret cryptographic keys
— Generate random initialization vectors for encryption

e Other “non-obvious” uses:

— Generate passwords for new users

— Shuffle the order of votes (in an electronic voting
machine)

— Shuffle cards (for an online gambling site)

10/14/16 CSE 484 | CSE M 584 - Fall 2016

32

&5 A World of Action!

. Fold | Check | Bet(s5)

6k
0
G

-

D

mamajoe: Hey guys, Big B is in!

Leave 584330

10/14/16 CSE 484 | CSE M 584 - Fall 2016

% PokerGUI

Site Parameters Cancel Game Parameters
Hour Offset I 4 Flop Num Players m
Minute Offset I 1 Your Position v
44 (B2 o a8 ?,.-P.I:z- [=
Second Offset I 52 LR
ool b .fﬁ'*& . * 010.5 Your Cards IBC IJh
+ 4 * L X $ 4
Shufle Button : L £ Flop [Js [8c | fad
Time |15;21;40 Show Cards
FOLD FOLD FOLD FOLD FOLD FOLD FOLD FOLD 3 1 2
0e | [bve
st lliaee
e ’QQO
LA 2 L 3
| | | | | [Player3 | Player2 | YOU

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

10/14/16

CSE 484 | CSE M 584 - Fall 2016

34

&8 A World of Action!

mamajoe: Hey guys, Big B is in!

Leave 584330

10/14/16 CSE 484 | CSE M 584 - Fall 2016

PS3 and Randomness

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

http://www.engadget.com/2010/12/29/hackers-obtain-
ps3-private-cryptography-key-due-to-epic-programm/

* 2010/2011: Hackers found/released private root key for Sony’s PS3

* Key used to sign software — now can load any software on PS3
and it will execute as “trusted”

* Due to bad random number: same “random” value used to sign
all system updates

10/14/16 CSE 484 | CSE M 584 - Fall 2016 36

PS3 and Randomness

* Example Current Event report from a past
iteration of 484

— https://catalyst.uw.edu/gopost/conversation/kohno/
452868

10/14/16 CSE 484 | CSE M 584 - Fall 2016 37

Quote

PS3 Exploit

Today, January 3rd, George “Geohot” Hotz found and released the private root key for Sony’s
Playstation 3 (PS3) video game console (http://www.geohot.com/). What this means is that homebrew
software enthusiasts, scientists, and software pirates can now load arbitrary software on the PS3 and
sign it using this key, and the system will execute it as trusted code. Legitimately, this allows Linux and
other operating systems to take advantage of the PS3's cell processor architecture; however, it also
opens up avenues of software piracy previously impossible on Sony's system without requiring any
hardware modifications to the system (previous access of this kind required a USB hardware dongle)

How it Was Done

This was enabled by a cryptographic error by Sony developers in their update process. In the DSA
signature algorithm, a number k is chosen from a supposedly random source for each signed message.
So long as the numbers are unique, the system is secure, but duplicating a random number between
messages can expose the private key to an untrusted party using simple mathematics
(http://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/). Sony used the exact same
“random value” k for all updates pushed to the system, making the signature scheme worthless.

The Most Secure

After Sony removed the “other OS" functionality of the PS3, greater scrutiny was placed on the PS3.
Since it's release in 2006, the Playstation 3 was considered the most secure of the three major video
game consoles, as it was the only console without a “root” compromise in the four years since release
(there were vulnerabilities limited to specific firmware or that required specialized hardware, but nothing
that provided unfettered access). By comparison, Microsoft's Xbox 360 was cracked over 4 years ago
(http://www.theregister.co.uk/2007/03/01/xbox_hack), and the Wii was cracked over 2 years ago
(http://wiibrew.org/wiki/Index.php).

Cullen Walsh
Mark Jordan
Peter Lipay

Other Problems

* Key generation

— Debian removed the randomness from SSL, creating
vulnerable keys for thousands of users/servers

— Undetected for 2 years (2006-2008)

* Live CDs, diskless clients
— May boot up in same state every time

* Virtual Machines

— Save state: Opportunity for attacker to inspect the
pseudorandom number generator’s state

— Restart: May use same “psuedorandom” value more
than once

10/14/16 CSE 484 | CSE M 584 - Fall 2016

39

DILBERT By Scort Apawms

TOUR OF ACCOUNTING

OVER HERE
Wt HAVE OUR

RANDOM NUMBER
GENERATOR.

www. dlibert.com ecottademe®solcom

NINE NINE
NINE NINE
NINE NINE

1e[a%[o, © 2001 United Feature Syndicate. Inc

ﬁgﬁ THAT'S THE
i PROBLEM
: WITH RAN-
THAT'S |
e bom» DOMNESS
YOU CAN
L NEVER BE

SURE.

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.

10/14/16

https://xkcd.com/221/

CSE 484 | CSE M 584 - Fall 2016

40

Obtaining Pseudorandom Numbers

* For security applications, want “cryptographically
secure pseudorandom numbers”

* Libraries include cryptographically secure
pseudorandom number generators

* Linux:
— /dev/random

— [dev/urandom - nonblocking, possibly less entropy

* Internally:
— Entropy pool gathered from multiple sources

10/14/16 CSE 484 | CSE M 584 - Fall 2016 41

Where do (good) random
numbers come from?

* Humans: keyboard, mouse input

* Timing: interrupt firing, arrival of packets on
the network interface

* Physical processes: unpredictable physical
phenomena

10/14/16 CSE 484 | CSE M 584 - Fall 2016

