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•  Ant	farm	



Looking	Forward	

• Today:	More	buffer	overflows	+	
defenses	
• Next	week:	Starting	
cryptography!	
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Lab	1	

•  It’s	hard!	That’s	normal.	

•  Both	the	conceptual	stuff	AND	the	
mechanics	of	it	(acronyms,	gdb,	C	hacking)	
are	hard!	
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Last	Time:	Basic	Buffer	Overflows	
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•  Many	of	you	have	done	basic	buffer	overflows	
before	

•  In	this	class,	we	go	way	deeper,	exploring	some	
much	more	sophisticated	ways	of	exploiting	
systems	from	even	small	amounts	of	control	



Last	Time:	Basic	Buffer	Overflows	

10/13/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 7	

•  Memory	pointed	to	by	str	is	copied	onto	stack…	
  void func(char *str) { 

           char buf[126]; 
           strcpy(buf,str); 
      } 

•  If	a	string	longer	than	126	bytes	is	copied	into	
buffer,	it	will	overwrite	adjacent	stack	locations.	

	

strcpy	does	NOT	check	whether	the	string		
at	*str	contains	fewer	than	126	characters	

This	will	be	interpreted	as	return	address!	

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local	variables	

str

Args	



Another	Variant:	
Function	Pointer	Overflow	

•  C	uses	function	pointers	for	callbacks:	if	
pointer	to	F	is	stored	in	memory	location	P,	
then	another	function	G	can	call	F	as	(*P)(…)	
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attack	code	

Buffer	with	attacker-supplied		
input	string	

Callback	
pointer	

Heap	

Legitimate	function	F	

overflow	

(elsewhere	in	memory)	



Other	Overflow	Targets	

•  Format	strings	in	C		
– More	details	today	

•  Heap	management	structures	used	by	
malloc()		
– More	details	in	section	

•  These	are	all	attacks	you	can	look	forward	to	
in	Lab	#1	J	
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Variable	Arguments	in	C	
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•  In	C,	can	define	a	function	with	a	variable	number	
of	arguments	
–  Example:	void	printf(const	char*	format,	…)	

•  Examples	of	usage:	

Format	specification	encoded	by	special	%	characters	
	
	%d,%i,%o,%u,%x,%X	–	integer	argument	
	%s	–	string	argument	
	%p	–	pointer	argument	(void	*)	
	Several	others	



Format	Strings	in	C	

•  Proper	use	of	printf	format	string:	
  int foo = 1234;  
  printf(“foo = %d in decimal, %X in hex”,foo,foo); 

 

This	will	print:		
  foo = 1234 in decimal, 4D2 in hex 

•  Sloppy	use	of	printf	format	string:	
  char buf[14] = “Hello, world!”;  
  printf(buf); 
  // should’ve used printf(“%s”, buf); 
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What	happens	if	buffer	
contains	format	symbols	

starting	with	%	???	



Implementation	of	Variable	Args	

•  Special	functions	va_start,	va_arg,	va_end																		
compute	arguments	at	run-time	
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printf	has	an	internal	
stack	pointer	



Format	Strings	in	C	

•  Proper	use	of	printf	format	string:	
  int foo=1234;  
  printf(“foo = %d in decimal, %X in hex”,foo,foo); 

 

This	will	print:		
  foo = 1234 in decimal, 4D2 in hex 

•  Sloppy	use	of	printf	format	string:	
  char buf[14] = “Hello, world!”;  
  printf(buf); 
  // should’ve used printf(“%s”, buf); 
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What	happens	if	buffer	
contains	format	symbols	

starting	with	%	???	



Format	Strings	in	C	

•  Proper	use	of	printf	format	string:	
  int foo=1234;  
  printf(“foo = %d in decimal, %X in hex”,foo,foo); 

 

This	will	print:		
  foo = 1234 in decimal, 4D2 in hex 

•  Sloppy	use	of	printf	format	string:	
  char buf[14] = “Hello, world!”;  
  printf(buf); 
  // should’ve used printf(“%s”, buf); 
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What	happens	if	buffer	
contains	format	symbols	

starting	with	%	???	

If	the	buffer	contains	format	symbols	starting	with	%,	the	
location	pointed	to	by	printf’s	internal	stack	pointer	will	be	

interpreted	as	an	argument	of	printf.			
	

This	can	be	exploited	to	move	printf’s	internal	stack	pointer!	



Viewing	Memory	
•  %x	format	symbol	tells	printf	to	output	data	on	stack	

   printf(“Here is an int:  %x”,i); 

•  What	if	printf	does	not	have	an	argument?	
   char buf[16]=“Here is an int:  %x”;  
   printf(buf); 

	

–  Stack	location	pointed	to	by	printf’s	internal	stack	pointer	will	be	
interpreted	as	an	int.		(What	if	crypto	key,	password,	...?)	

•  Or	what	about:	
  char buf[16]=“Here is a string:  %s”; 
  printf(buf); 

	

–  Stack	location	pointed	to	by	printf’s	internal	stack	pointer	will	be	
interpreted	as	a	pointer	to	a	string	
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Viewing	Memory	
•  %x	format	symbol	tells	printf	to	output	data	on	stack	

   printf(“Here is an int:  %x”,i); 

•  What	if	printf	does	not	have	an	argument?	
   char buf[16]=“Here is an int:  %x”;  
   printf(buf); 

	

–  Stack	location	pointed	to	by	printf’s	internal	stack	pointer	will	be	
interpreted	as	an	int.		(What	if	crypto	key,	password,	...?)	

•  Or	what	about:	
  char buf[16]=“Here is a string:  %s”; 
  printf(buf); 

	

–  Stack	location	pointed	to	by	printf’s	internal	stack	pointer	will	be	
interpreted	as	a	pointer	to	a	string	
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Writing	Stack	with	Format	Strings	

•  %n	format	symbol	tells	printf	to	write	the	number	
of	characters	that	have	been	printed	
   printf(“Overflow this!%n”,&myVar); 

–  Argument	of	printf	is	interpeted	as	destination	address	
–  This	writes	14	into	myVar	(“Overflow	this!”	has	14	characters)	

•  What	if	printf	does	not	have	an	argument?	
   char buf[16]=“Overflow this!%n”; 
   printf(buf); 

–  Stack	location	pointed	to	by	printf’s	internal	stack	pointer	will	
be	interpreted	as	address	into	which	the	number	of	
characters	will	be	written.	
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Using	%n	to	Overwrite	Return	
Address	

	
•  Tools:		
–  incrementing	printf’s	internal	stack	pointer	
– writing	#	characters	printed	to	memory	location	
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RET	



Using	%n	to	Overwrite	Return	Address	
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RET	“…	attackString%n”,	attack	code	 &RET	

When	%n	happens,	make	sure	the	location		
under	printf’s	stack	pointer	contains	address	
of	RET;	%n	will	write	the	number	of	characters		
In		attackString	into	RET	

Return	
execution	to	
this	address	

Buffer	with	attacker-supplied		
input	string	

Number	of	characters	in	
attackString	must	be		
equal	to	…	what?	

C	allows	you	to	concisely	specify	the	“width”	to	print,	causing	printf	to	pad	by	printing	
additional	blank	characters	without	reading	anything	else	off	the	stack.	
	

Example:	printf(“%5d”,	10)	will	print	three	spaces	followed	by	the	integer:	“			10”	
That	is,	%n	will	print	5,	not	2.	

This	portion	contains	
enough	%	symbols	
to	advance	printf’s	
internal	stack	pointer	

Key	idea:	do	this	4	times	with	the	right	numbers	
	to	overwrite	the	return	address	byte-by-byte.		

(4x	%n	to	write	into	&RET,	&RET+1,	&RET+2,	&RET+3)	



Recommended	Reading	

•  It	will	be	hard	to	do	Lab	1	without	reading:	
– Smashing	the	Stack	for	Fun	and	Profit	
– Exploiting	Format	String	Vulnerabilities	

•  Links	to	these	readings	are	posted	on	the	
course	schedule.	

10/13/16	 CSE	484	/	CSE	M	584	-	Fall	2016	 20	



Buffer	Overflow:	Causes	and	Cures	

•  Typical	memory	exploit	involves	code	injection	
–  Put	malicious	code	at	a	predictable	location	in	memory,	

usually	masquerading	as	data	
–  Trick	vulnerable	program	into	passing	control	to	it	

•  Answer	Q2	on	your	worksheet	
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Buffer	Overflow:	Causes	and	Cures	

•  Typical	memory	exploit	involves	code	injection	
–  Put	malicious	code	at	a	predictable	location	in	memory,	

usually	masquerading	as	data	
–  Trick	vulnerable	program	into	passing	control	to	it	

•  We’ll	talk	about	a	few	defenses	today:	
1.  Prevent	execution	of	untrusted	code	
2.  Stack	“canaries”	
3.  Encrypt	pointers	
4.  Address	space	layout	randomization	
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W⊕X	/	DEP	
•  Mark	all	writeable	memory	locations	as	non-

executable	
–  Example:	Microsoft’s	Data	Execution	Prevention	(DEP)	
–  This	blocks	(almost)	all	code	injection	exploits	

•  Hardware	support	
–  AMD	“NX”	bit,	Intel	“XD”	bit	(in	post-2004	CPUs)	
– Makes	memory	page	non-executable	

•  Widely	deployed	
– Windows	(since	XP	SP2),		

	Linux	(via	PaX	patches),		
	OS	X	(since	10.5)	
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What	Does	W⊕X	Not	Prevent?	
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•  Can	still	corrupt	stack	…	
– …	or	function	pointers	or	critical	data	on	the	heap	

•  As	long	as	“saved	EIP”	points	into	existing	code,	
W⊕X	protection	will	not	block	control	transfer	

•  This	is	the	basis	of	return-to-libc	exploits	
–  Overwrite	saved	EIP	with	address	of	any	library	routine,	

arrange	stack	to	look	like	arguments	

•  Does	not	look	like	a	huge	threat	
–  Attacker	cannot	execute	arbitrary	code,	especially	if	

system()	is	not	available	



return-to-libc	on	Steroids		

•  Overwritten	saved	EIP	need	not	point	to	the	
beginning	of	a	library	routine	

•  Any	existing	instruction	in	the	code	image	is	fine	
– Will	execute	the	sequence	starting	from	this	instruction	

•  What	if	instruction	sequence	contains	RET?	
–  Execution	will	be	transferred…	to	where?	
– Read	the	word	pointed	to	by	stack	pointer	(ESP)	

•  Guess	what?		Its	value	is	under	attacker’s	control!		
– Use	it	as	the	new	value	for	EIP	

•  Now	control	is	transferred	to	an	address	of	attacker’s	choice!	
–  Increment	ESP	to	point	to	the	next	word	on	the	stack	
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Chaining	RETs	for	Fun	and	Profit	

•  Can	chain	together	sequences	ending	in	RET	
–  Krahmer,	“x86-64	buffer	overflow	exploits	and	the	

borrowed	code	chunks	exploitation	technique”	(2005)	

•  What	is	this	good	for?	
•  Answer	[Shacham	et	al.]:	everything	
–  Turing-complete	language	
–  Build	“gadgets”	for	load-store,	arithmetic,	logic,	control	

flow,	system	calls	
–  Attack	can	perform	arbitrary	computation	using	no	

injected	code	at	all	–	return-oriented	programming		
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Return-Oriented	Programming	
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Other	Issues	with	W⊕X	/	DEP	

•  Some	applications	require	executable	stack	
–  Example:	Flash	ActionScript,	Lisp,	other	interpreters	

•  Some	applications	are	not	linked	with	/NXcompat	
–  DEP	disabled	(e.g.,	some	Web	browsers)	

•  JVM	makes	all	its	memory	RWX	–	readable,	
writable,	executable	
–  Inject	attack	code	over	memory	containing	Java	objects,	

pass	control	to	them	

•  “Return”	into	a	memory	mapping	routine,	make	
page	containing	attack	code	writeable		
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Run-Time	Checking:	StackGuard	
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•  Embed	“canaries”	(stack	cookies)	in	stack	frames	and	verify	
their	integrity	prior	to	function	return	
–  Any	overflow	of	local	variables	will	damage	the	canary	

	
	

Top	of	
stack	

buf	 sfp	 ret	
addr	

Local	variables	 Pointer	to	
previous	
frame	

Frame	of	the	
calling	function	

Return	
execution	to	
this	address	

canary	



Run-Time	Checking:	StackGuard	
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•  Embed	“canaries”	(stack	cookies)	in	stack	frames	and	verify	
their	integrity	prior	to	function	return	
–  Any	overflow	of	local	variables	will	damage	the	canary	

	

•  Choose	random	canary	string	on	program	start	
–  Attacker	can’t	guess	what	the	value	of	canary	will	be	

•  Terminator	canary:	“\0”,	newline,	linefeed,	EOF	
–  String	functions	like	strcpy	won’t	copy	beyond	“\0”	

Top	of	
stack	

buf	 sfp	 ret	
addr	

Local	variables	 Pointer	to	
previous	
frame	

Frame	of	the	
calling	function	

Return	
execution	to	
this	address	

canary	



StackGuard	Implementation	

•  StackGuard	requires	code	recompilation	
•  Checking	canary	integrity	prior	to	every	function	

return	causes	a	performance	penalty	
–  For	example,	8%	for	Apache	Web	server	

•  StackGuard	can	be	defeated	
–  A	single	memory	write	where	the	attacker	controls	both	

the	value	and	the	destination	is	sufficient	
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Defeating	StackGuard	
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•  Suppose	program	contains	strcpy(dst,buf)	
where	attacker	controls	both	dst	and	buf	
– Example:	dst	is	a	local	pointer	variable	

buf	 sfp	 RET	

Return	execution	to	
this	address	

canary	dst	



Defeating	StackGuard	
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•  Suppose	program	contains	strcpy(dst,buf)	
where	attacker	controls	both	dst	and	buf	
– Example:	dst	is	a	local	pointer	variable	

buf	 sfp	 RET	

Return	execution	to	
this	address	

canary	dst	

Answer	Q3			



Defeating	StackGuard	
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•  Suppose	program	contains	strcpy(dst,buf)	
where	attacker	controls	both	dst	and	buf	
– Example:	dst	is	a	local	pointer	variable	

buf	 sfp	 RET	

Return	execution	to	
this	address	

canary	dst	

sfp	 RET	canary	BadPointer,	attack	code	 &RET	

Overwrite	destination	of	strcpy	with	RET	position	
strcpy	will	copy		
BadPointer	here	



PointGuard	

•  Attack:	overflow	a	function	pointer	so	that	it	points	
to	attack	code	

•  Idea:	encrypt	all	pointers	while	in	memory	
–  Generate	a	random	key	when	program	is	executed	
–  Each	pointer	is	XORed	with	this	key	when	loaded	from	

memory	to	registers	or	stored	back	into	memory	
•  Pointers	cannot	be	overflowed	while	in	registers	

•  Attacker	cannot	predict	the	target	program’s	key	
–  Even	if	pointer	is	overwritten,	after	XORing	with	key	it	

will	dereference	to	a	“random”	memory	address	
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Normal	Pointer	Dereference	
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CPU	

Memory	 Pointer	
0x1234	 Data	

1.	Fetch	pointer	value	

0x1234	

2.	Access	data	referenced	by	pointer	

0x1234	 0x1340	

CPU	

Memory	
Corrupted	pointer	
0x1234	
0x1340	

Data	

1.	Fetch	pointer	value	

2.	Access	attack	code	referenced	
	by	corrupted	pointer	

Attack	
code	

[Cowan]	



PointGuard	Dereference	
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[Cowan]	

CPU	

Memory	 Encrypted	pointer	
0x7239	 Data	

1.	Fetch	pointer		
				value	

0x1234	

2.	Access	data	referenced	by	pointer	0x1234	
Decrypt	

0x1234	 0x1340	

CPU	

Memory	
Corrupted	pointer	
0x7239	
0x1340	

Data	

2.	Access	random	address;	
				segmentation	fault	and	crash	

Attack	
code	

1.	Fetch	pointer		
				value	

0x9786	
Decrypt	

Decrypts	to	
random	value	

0x9786	



PointGuard	Issues	

•  Must	be	very	fast	
–  Pointer	dereferences	are	very	common	

•  Compiler	issues	
– Must	encrypt	and	decrypt	only	pointers	
–  If	compiler	“spills”	registers,	unencrypted	pointer	values	

end	up	in	memory	and	can	be	overwritten	there	
•  Attacker	should	not	be	able	to	modify	the	key	
–  Store	key	in	its	own	non-writable	memory	page	

•  PG’d	code	doesn’t	mix	well	with	normal	code	
– What	if	PG’d	code	needs	to	pass	a	pointer	to	OS	kernel?	
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ASLR:	Address	Space	Randomization	

•  Map	shared	libraries	to	a	random	location	in	
process	memory	
–  Attacker	does	not	know	addresses	of	executable	code	

•  Deployment	(examples)	
– Windows	Vista:	8	bits	of	randomness	for	DLLs	
–  Linux	(via	PaX):	16	bits	of	randomness	for	libraries	
–  Even	Android	
– More	effective	on	64-bit	architectures	

•  Other	randomization	methods	
–  Randomize	system	call	ids	or	instruction	set	
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Example:	ASLR	in	Vista	

•  Booting	Vista	twice	loads	libraries	into	
different	locations:	
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ASLR	Issues	

•  NOP	slides	and	heap	spraying	to	increase	
likelihood	for	custom	code	(e.g.	on	heap)	

•  Brute	force	attacks	or	memory	disclosures	to	
map	out	memory	on	the	fly	
– Disclosing	a	single	address	can	reveal	the	
location	of	all	code	within	a	library	
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Other	Possible	Solutions	

•  Use	safe	programming	languages,	e.g.,	Java	
– What	about	legacy	C	code?	
–  (Note	that	Java	is	not	the	complete	solution)	

•  Static	analysis	of	source	code	to	find	overflows	
•  Dynamic	testing:	“fuzzing”	
•  LibSafe:	dynamically	loaded	library	that	intercepts	

calls	to	unsafe	C	functions	and	checks	that	there’s	
enough	space	before	doing	copies	
–  Also	doesn’t	prevent	everything	
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Answer	Qs	4-6	
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