CSE 484 [CSE M 584: Computer Security and Privacy

Software Security:
Buffer Overflow Attacks

(continued)

Fall 2016

Ada (Adam) Lerner
lerner@cs.washington.edu

Thanks to Franzi Roesner, Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John
Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample
slides and materials ...

w
)
i’
O
d
J
)
c
A
wfd
)
(V)]
d
=

ty M

Secur

CSE 484 | CSE M 584 - Fall 2016

10/13/16

Security Mindset Anecdotes

e Ant farm

POST CARD |z, |

10/13/16 CSE 484 | CSE M 584 - Fall 2016 3

Looking Forward

* Today: More buffer overflows +
defenses

* Next week: Starting
cryptography!

Lab 1

* |[t’s hard! That’s normal.

* Both the conceptual stuff AND the
mechanics of it (acronyms, gdb, C hacking)
are hard!

Last Time: Basic Buffer Overflows

* Many of you have done basic buffer overflows
before

* In this class, we go way deeper, exploring some
much more sophisticated ways of exploiting
systems from even small amounts of control

Last Time: Basic Buffer Overflows

* Memory pointed to by stris copied onto stack...

void func(char *str) {

char buf[126]; strcpy does NOT check whether the string
strcpy (buf,str) ; at *str contains fewer than 126 character

0n

}

* If a string longer than 126 bytes is copied into
bufter, it will overwrite adjacent stack locations.

This will be interpreted as return address!

\ J

Y
Local variables

Atgs Addr OxFF..F

10/13/16 CSE 484 | CSE M 584 - Fall 2016 7

Another Variant:
Function Pointer Overflow
* Cuses function pointers for callbacks: if

pointer to F is stored in memory location P,
then another function G can call F as (*P)(...)

Buffer with attacker-supplied Callback
input string pointer
~ — Y4 A N\
Heap attack code overflow

l

Legitimate function F

(elsewhere in memory)

10/13/16 CSE 484 | CSE M 584 - Fall 2016 8

Other Overflow Targets

* Format strings in C
— More details today

* Heap management structures used by
malloc()
— More details in section

* These are all attacks you can look forward to
in Lab #1 ©

10/13/16 CSE 484 | CSE M 584 - Fall 2016

Variable Arguments in C

* InC, can define a function with a variable number
of arguments

— Example: void printf(const char* format, ...)

* Examples of usage:

printf (“hello, worlo”
printf (“length of ‘n” tr, str.length());
printf (“unable to open file descrlptor n”, f£d);

Format specification encoded by special % characters

%d,%i,%0,%U,%X,%X — integer argument
%S — string argument

%p — pointer argument (void *)
Several others

10/13/16 CSE 484 | CSE M 584 - Fall 2016 10

Format Strings in C

* Proper use of printf format string:

int foo = 1234;

printf (“foo = 3%d in decimal, %X in hex”, foo, foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

* Sloppy use of printf format string:

char buf[l14] = “Hello, world!”;
printf (buf) ;
// should’ve used printf (“%$s”, buf);

What happens if buffer
contains format symbols
starting with 7% 222

10/13/16 CSE 484 | CSE M 584 - Fall 2016

11

Implementation of Variable Args

* Special functions va_start, va_arg, va_end
compute arguments at run-time

void printf (const char* format, ...)

{

int i; char c¢; char* s; double d;

va_list ap; * declare an “argument pointer” to a variable arg list */
va_start(ap, format); initialize arg pointer using last known arg */

for (c(har* p = f)or{mat; *p L= *\0’; p++) { printf has an internal
it (%P == B .
e sy 4 stack pointer

case ‘d’:
i = va_arg(ap, int); break;

case ‘s’:
s = va_arg(ap, char*); break;

case ‘c¢’:
e = Wva,_arglap, char); break;

}

/* etc. for each % specification */

va_end(ap); /* restore any special stack manipulations */

Format Strings in C

* Proper use of printf format string:

int foo=1234;

printf (“foo = 3%d in decimal, %X in hex”, foo, foo);

This will print:

foo = 1234 in decimal, 4D2 in hex

* Sloppy use of printf format string:

char buf[l14] = “Hello, world!”;
printf (buf) ;
// should’ve used printf (“%$s”, buf);

What happens if buffer
contains format symbols
starting with 7% 222

10/13/16 CSE 484 | CSE M 584 - Fall 2016

13

Format Strings in C

If the buffer contains format symbols starting with %, the
location pointed to by printf’s internal stack pointer will be
interpreted as an argument of printf.

This can be exploited to move printf’s internal stack pointer!

. . . | What happens if buffer
* Sloppy usc Of prlntf format Strlng‘ contains format symbols

char buf[l14] = “Hello, world!”; starting with % 222

// should’ve used printf (“%$s”, buf);

Viewing Memory

. format symbol tells printf to output data on stack
printf (“Here is an int: %x”,i);

* What if printf does not have an argument?

char buf[l6]=“Here is an int: %x”;
printf (buf) ;

e Or what about:

char buf[l6]=“Here is a string: %s”;
printf (buf) ;

10/13/16 CSE 484 | CSE M 584 - Fall 2016

Viewing Memory

. format symbol tells printf to output data on stack

rintf (“Here is an int: $x” ,1) ;
14

* What if printf does not have an argument?

char buf[l6]=“Here is an int: %x”;
printf (buf) ;

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

e Or what about:

char buf[l6]=“Here is a string: %s”;
printf (buf) ;

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

10/13/16 CSE 484 | CSE M 584 - Fall 2016

Writing Stack with Format Strings

. format symbol tells printf to write the number
of characters that have been printed

printf (“Overflow this!%n”, &myVar) ;

— Argument of printf is interpeted as destination address
— This writes 14 into myVar (“Overflow this!” has 14 characters)

* What if printf does not have an argument?
char buf[l6]="Overflow this!%n”;
printf (buf) ;

— Stack location pointed to by printf’s internal stack pointer will
be interpreted as address into which the number of
characters will be written.

10/13/16 CSE 484 | CSE M 584 - Fall 2016 17

Using %n to Overwrite Return
Address

RET

H_I
 Tools:

— incrementing printf’s internal stack pointer
— writing # characters printed to memory location

Using %n to Overwrite Return Address

This portion contains
enough % symbols
to advance printf’s
internal stack pointer

Buffer with attacker-supplied

input string
\ e
X \ N
11 . »”
... attackStringZn", attack code &RET RET
A\ PN
7 X Z) <
Number of characters in When %n happens, make sure the location R
attackString must be under printf’s stack pointer contains address efgcjmion to
equal to ... what? of RET; %n will write the number of characters this address
T In attackString into RET

C allows you to concisely specify the “width” to print, causing printf to pad by printing
additional blank characters without reading anything else off the stack.

Example: printf(“%5d”, 10) will print three spaces followed by the integer: “ 10”

That is, %Zn will print 5, not 2.

Key idea: do this 4 times with the right numbers
to overwrite the return address byte-by-byte.
(4x %n to write into &RET, &RET+1, &RET+2, &RET+3)

Recommended Reading

* It will be hard to do Lab 1 without reading:
— Smashing the Stack for Fun and Profit
— Exploiting Format String Vulnerabilities

* Links to these readings are posted on the
course schedule.

10/13/16 CSE 484 | CSE M 584 - Fall 2016

Buffer Overflow: Causes and Cures

* Typical memory exploit involves code injection

— Put malicious code at a predictable location in memory,
usually masquerading as data

— Trick vulnerable program into passing control to it

* Answer Q2 on your worksheet

10/13/16 CSE 484 | CSE M 584 - Fall 2016 21

Buffer Overflow: Causes and Cures

* Typical memory exploit involves code injection
— Put malicious code at a predictable location in memory,
usually masquerading as data
— Trick vulnerable program into passing control to it

* We’ll talk about a few defenses today:
1. Prevent execution of untrusted code
Stack “canaries”

Encrypt pointers
Address space layout randomization

Bow N

10/13/16 CSE 484 | CSE M 584 - Fall 2016 22

W®X [DEP

* Mark all writeable memory locations as non-
executable

— Example: Microsoft’s Data Execution Prevention (DEP)
— This blocks (almost) all code injection exploits
* Hardware support
— AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
— Makes memory page non-executable
* Widely deployed

Data Execution Prevention - Microsoft Windows

— Windows (since XP SPz), o el protect your compater, Windows has cosed ths program.

- ;I Name: Windows Explorer
- Publisher:

Linux (via PaX patches),
OS X (since 10.5)

Microsoft Corporation

Data Execution Prevention helps protect against damage from viruses and other
security threats. What should I do?

10/13/16 CSE 484 | CSE M 584 - Fall 2016

What Does W®X Not Prevent?

* Canstill corrupt stack...
— ... or function pointers or critical data on the heap

* Aslong as “saved EIP” points into existing code,
W@®@X protection will not block control transfer

This is the basis of return-to-libc exploits

— Overwrite saved EIP with address of any library routine,
arrange stack to look like arguments

* Does not look like a huge threat

— Attacker cannot execute arbitrary code, especially if
system() is not available

10/13/16 CSE 484 | CSE M 584 - Fall 2016

return-to-libc on Steroids

* Overwritten saved EIP need not point to the
beginning of a library routine

* Any existing instruction in the code image is fine
— Will execute the sequence starting from this instruction

* What if instruction sequence contains RET?
— Execution will be transferred... to where?

— Read the word pointed to by stack pointer (ESP)
e Guess what? Its value is under attacker’s control!

— Use it as the new value for EIP
* Now control is transferred to an address of attacker’s choice!

— Increment ESP to point to the next word on the stack

10/13/16 CSE 484 | CSE M 584 - Fall 2016

25

Chaining RETs for Fun and Profit

* (Can chain together sequences ending in RET

— Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

* What is this good for?

* Answer [Shacham et al.]: everything
— Turing-complete language

— Build “gadgets” for load-store, arithmetic, logic, control
flow, system calls

— Attack can perform arbitrary computation using no
injected code at all - return-oriented programming

10/13/16 CSE 484 | CSE M 584 - Fall 2016

26

Return-Oriented Programming

Sahwday, Jamay 6, 2007

Daily Blog Tips awarded th

Laft pveek Darren gse, the Daily' Blog Tips is Ren
from the ambus atfidcting] a vast audierjce foll
Problogger blag, of | bloggers| |who |are imp
annduced the winners of looking to dwprove their

latest Group Writinfe] blogs. Whin abput The
Profect called ' Reviews\ the puecess of) jlog that
and Peedictions"/ Among \Da !q ‘ Ei rela
tha
"“
“l/

Re t|uir|n o|r |ien |ted Pro|g|ra |mm | ing

10/13/16 CSE 484 | CSE M 584 - Fall 2016

Other Issues with W®X /| DEP

* Some applications require executable stack
— Example: Flash ActionScript, Lisp, other interpreters

* Some applications are not linked with [NXcompat
— DEP disabled (e.g., some Web browsers)

* JVM makes all its memory RWX - readable,

writable, executable

— Inject attack code over memory containing Java objects,
pass control to them

* “Return” into a memory mapping routine, make
page containing attack code writeable

10/13/16 CSE 484 | CSE M 584 - Fall 2016 28

Run-Time Checking: StackGuard

« Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

e
buf sfp aﬁér Top of
stack
N g \ Y J L Y J
Local variables PS)IJQ\E%JSO excla_:{cet}tlfgnn to

frame this address

10/13/16 CSE 484 | CSE M 584 - Fall 2016

Run-Time Checking: StackGuard

« Embed “canaries” (stack cookies) in stack frames and verify
their integrity prior to function return

— Any overflow of local variables will damage the canary

7
buf sfp aﬁér Top of
stack
N g \ Y J L Y J
Local variables Pp?rig\sie&}so excln_:{cel}tlfgnn to

frame this address

* Choose random canary string on program start
— Attacker can’t guess what the value of canary will be

« Terminator canary: “\o~, newline, linefeed, EOF
— String functions like strcpy won’ t copy beyond “\o”

10/13/16 CSE 484 | CSE M 584 - Fall 2016 30

StackGuard Implementation

* StackGuard requires code recompilation

* Checking canary integrity prior to every function
return causes a performance penalty
— For example, 8% for Apache Web server

* StackGuard can be defeated

— A single memory write where the attacker controls both
the value and the destination is sufficient

10/13/16 CSE 484 | CSE M 584 - Fall 2016 31

Defeating StackGuard

* Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf

— Example: dst is a local pointer variable

H_I

eturn execution
this address

10/13/16 CSE 484 | CSE M 584 - Fall 2016

Defeating StackGuard

* Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf

— Example: dst is a local pointer variable

H_I

eturn execution
this address

Answer Q3

10/13/16 CSE 484 | CSE M 584 - Fall 2016 33

Defeating StackGuard

* Suppose program contains strcpy(dst,buf)
where attacker controls both dst and buf

— Example: dst is a local pointer variable

H_I

Return execution to
this address

\/
BadPointer, attack code &RET
A

_
Overwrite destination of strcpy with RET positiyé

/ strcpy will copy
BadPointer here

10/13/16 CSE 484 | CSE M 584 - Fall 2016 34

PointGuard

* Attack: overflow a function pointer so that it points
to attack code

* |dea: encrypt all pointers while in memory
— Generate a random key when program is executed

— Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
* Pointers cannot be overflowed while in registers

* Attacker cannot predict the target program’s key

— Even if pointer is overwritten, after XORing with key it
will dereference to a “random” memory address

10/13/16 CSE 484 | CSE M 584 - Fall 2016 35

[Cowan]

Normal Pointer Dereference

Memory

Memory

10/13/16

1. Fetch pointer value

CPU

2. Access data referenced by pointer

1. Fetch pointer value

1

X

Pointer

0X1234 Data
0x1234

2. Access attack code referenced
by corrupted pointer

Corruptled pointer
TTOx1234| Data AtzlaCk
0X1340 code
0X1234 0X1340

CSE 484 | CSE M 584 - Fall 2016 36

[Cowan]

PointGuard Dereference

CPU
A‘x1234

1. Fetch pointer 2. Access data referenced by pointer
value Decrypt
2}
Encryptgd pointer
Memory 0x7239 Data
0X1234
Decrypts to
GRS 2. Access random address;
0X9786 segmentation fault and crash
1. Fetch pointer
value Decrypt
Corrupted pointer Attack T
Memor TTOX72390 Data
€mo y 0x1340 code
0X1234 0x1340 0x9786

10/13/16 CSE 484 | CSE M 584 - Fall 2016 37

PointGuard Issues

Must be very fast

— Pointer dereferences are very common
* Compilerissues

— Must encrypt and decrypt only pointers

— If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

Attacker should not be able to modify the key
— Store key in its own non-writable memory page

PG’d code doesn’t mix well with normal code
— What if PG’d code needs to pass a pointer to OS kernel?

10/13/16 CSE 484 | CSE M 584 - Fall 2016 38

ASLR: Address Space Randomization

* Map shared libraries to a random location in
process memory
— Attacker does not know addresses of executable code
* Deployment (examples)
— Windows Vista: 8 bits of randomness for DLLs
— Linux (via PaX): 16 bits of randomness for libraries
— Even Android
— More effective on 64-bit architectures
* Other randomization methods
— Randomize system call ids or instruction set

10/13/16 CSE 484 | CSE M 584 - Fall 2016 39

Example: ASLR in Vista

* Booting Vista twice loads libraries into
different locations:

10/13/16

htlanman.dll 06D 7F0000 | Microsoft® Lan Manager
ntmarta. dll 075370000 | Windows NT MARTA provider
ntshrul. dll Ox6F2C0000 | Shell extensions for sharing
ole32.dll 0x76160000 | Microsoft OLE for Windows
htlanman. dll UxeDAS0000 | Microsoft® Lan Manager
htmarta.dll Ox/5660000 | Windows NT MARTA provider
htshrul. dll 0x6D3D0000 | Shell extensions for sharing
ole32.dll 0x763C0000 | Microsoft OLE for Windows

CSE 484 | CSE M 584 - Fall 2016

40

ASLR Issues

* NOP slides and heap spraying to increase
likelihood for custom code (e.g. on heap)

* Brute force attacks or memory disclosures to
map out memory on the fly

— Disclosing a single address can reveal the
location of all code within a library

10/13/16 CSE 484 | CSE M 584 - Fall 2016 41

Other Possible Solutions

* Use safe programming languages, e.g., Java
— What about legacy C code?
— (Note that Java is not the complete solution)

+ Static analysis of source code to find overflows
* Dynamic testing: “fuzzing”

* LibSafe: dynamically loaded library that intercepts
calls to unsafe C functions and checks that there’s
enough space before doing copies

— Also doesn’t prevent everything

10/13/16 CSE 484 | CSE M 584 - Fall 2016 42

10/13/16

Answer Qs 4-6

CSE 484 | CSE M 584 - Fall 2016

43

