
CSE 484 / CSE M 584
Computer Security:
Lab 2 & Click Jacking

TA: Adrian Sham
adrsham@cs

Thanks to Franzi & Vitaly Shmatikov for Clickjacking slides

Logistics / Reminders

• Submit account info for Lab #2 by 5pm today.
– Link: https://catalyst.uw.edu/webq/survey/neyp/270183

• Homework #2 due tomorrow (5pm).

• Next office hour:

– Michael and Adrian: 9:30-10:30am, CSE 218

• Lab #2: Web security

– Should be out tomorrow / earlier

XSS review

• Cross-site scripting (XSS) is a type of computer
security vulnerability typically found is web
applications.

• Allows the attacker to inject JavaScript into web
pages viewed by other users.

• JavaScript can do a lot of things, like reading
cookies and ex-filtrating them.

• Solutions
– Sanitize/validate your input
– Browser detection

XSSI: Cross-Site Script Inclusion

• Idea: Include scripts (e.g., libraries) to run in
context of current domain.

Example:
<head> <script

src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jq

uery.min.js"></script> </head>

• Threat: Attacker provides malicious library,
can execute code in your domain’s context.

• Solution: Make sure included code comes
from trusted site.

Same-Origin Policy

Website origin = (scheme, domain, port)

[Example thanks to Wikipedia.]

Same-Origin Policy (DOM)

• Only code from same origin can access HTML
elements on another site (or in an iframe).

www.example.com

www.example.com
/iframe.html

www.evil.com

www.example.com
/iframe.html

www.example.com (the
parent) can access HTML
elements in the iframe

(and vice versa).

www.evil.com (the parent)
cannot access HTML

elements in the iframe
(and vice versa).

http://www.example.com
http://www.example.com/iframe.html
http://www.evil.com
http://www.example.com/iframe.html
http://www.example.com
http://www.evil.com

Same-Origin Policy (Cookies)

• For cookies: Only code from same origin can
read/write cookies associated with an origin.

– Can be set via Javascript (document.cookie=…) or via
Set-Cookie header in HTTP response.

– Can narrow to subdomain/path (e.g.,
http://example.com can set cookie scoped to
http://account.example.com/login.)

– Secure cookie: send only via HTTPS.

– HttpOnly cookie: can’t access using JavaScript.

http://example.com
http://account.example.com/login

Same-Origin Policy (Cookies)

• Browsers automatically include cookies with
HTTP requests.

• First-party cookie: belongs to top-level domain.

• Third-party cookie: belongs to domain of
embedded content.

www.bar.com

www.foo.com

Bar’s Server

Foo’s Server

www.bar.com’s
cookie (1st party)

www.foo.com’s
cookie (3rd party)

http://www.bar.com
http://www.foo.com

Same-Origin Policy (Scripts)

• When a website includes a script, that script
runs in the context of the embedding website.

• If code in the script sets a cookie, under what
origin will it be set?

www.example.com

<head>

<script

src=”http://otherdoma

in.com/library.js"></

script> </head>

The code from
http://otherdomain.com
can access HTML elements
and cookies on
www.example.com.

http://www.example.com
http://otherdomain.com
http://www.example.com

PHP review

• A server-side programming language

• File extension is .php

• Before a webpage is sent to you, PHP code is
executed by the server

• You won’t see the PHP code, only html

• PHP can be use to set and read cookies for
authentication

• You will need a basic PHP script to receive
captured cookies

Quick demo of XSS

Back story to Lab #2

• You finally decide to show your click-happy
Computer Security TAs who’s boss.

• Use XSS attacks to steal your TA’s cookies, and
therefore access your gradebook to change
your grade.

• Use a SQL Injection to add yourself to Franzi’s
good list.

Basic setup

• Give the TAs (y.um.my) a link with a XSS
vulnerability.

• TAs will ‘visit’ this link, and their cookie will be
stolen.

• The process of stealing cookie involves
sending it to a place you control.

• Save the cookie, read it, and use it to log in
and change your grade.

• Easy!

What you will need

• Firefox, latest version should be OK
– Chrome might probably won’t work

• Firebug add-on for Firefox

• Setup a location to collect your stolen liberated
cookies
– Good place is homes.cs, FAQ here

• URL encoder (converts characters into a format
for transmission over the internet)
– Such as this

https://www.mozilla.org/en-US/firefox/new/
http://getfirebug.com/
https://homes.cs.washington.edu/FAQ.html
http://meyerweb.com/eric/tools/dencoder/

Lab #2 Explained

yoshoo

homes.cs.washington.e
du/~you/evil.php

TAs You

y.um.my DB

authToken=aet38f authToken=34gae8

(1) Click this:
search?v=x&q=evil

(2) Okay!
search?v=x&q=evil

(3) Evil page renders:
search?v=x&q=evil

(4) Cookie steal (5) Use cookie to
change grade

Tips

• Be mindful of Same Origin Policy

– Don’t redirect

• Run JavaScript locally before sending to
y.um.my

• When URL encoding, be careful of new-lines in
XSS

– Browser might stop executing at newline

• Talk to us if something feels wrong / confusing

SQL Injection

• SQL Injection allows the attacker to insert
malicious SQL statements

• Usually caused by incorrect filtering of user
input

SQL Injection Lab #2

• Franzi keeps a list of students she really really
likes

• Use SQL Injection to inject your username into
the list

• Hint: There are different syntax(s) for inserting
into a table, try all of them

Click Jacking

• Clickjacking happens when an attacker uses
different techniques to hijack clicks meant for
their page and routing them to another

• Multiple techniques

– Transparent UI elements on top of a button or link

– Timing based attacks

https://www.owasp.org/index.php/Clickjacking

Example

• Video of click jacking

• https://www.youtube.com/watch?v=9V4_em
KyAg8

• User is asked to play a game

• Button is quickly switched to a ‘save’ button

https://www.youtube.com/watch?v=9V4_emKyAg8

Clickjacking

• Trick users into interacting with sensitive user
interfaces in another domain.

– Using invisible iframes:
www.evil.com

Click here to win!!!

http://www.evil.com

Clickjacking using the Cursor

[Figure from Huang et al., “Clickjacking: Attacks and Defenses”, USENIX Security, 2012]

• Following slides by Vitaly Shmatikov

• http://www.cs.utexas.edu/~shmat/courses/cs
361s/clickjack.ppt

• Attacker overlays multiple transparent or
opaque frames to trick a user into clicking on a
button or link on another page

• Clicks meant for the visible page are hijacked
and routed to another, invisible page

Clickjacking (UI Redressing)

slide 24

[Hansen and Grossman 2008]

Clickjacking in the Wild

• Google search for “clickjacking” returns 624,000
results… this is not a hypothetical threat!

• Summer 2010: Facebook worm superimposes an
invisible iframe over the entire page that links
back to the victim's Facebook page

– If victim is logged in, automatically recommends link
to new friends as soon as the page is clicked on

• Many clickjacking attacks against Twitter

– Users send out tweets against their will

slide 25

It’s All About iFrame

• Any site can frame any other site
<iframe

src=“http://www.google.com/...”>

</iframe>

• HTML attributes
– Style

– Opacity defines visibility percentage of the iframe
• 1.0: completely visible

• 0.0: completely invisible

slide 26

Hiding the Target Element

• Use CSS opacity property and z-index
property to hide target element and make
other element float under the target element

• Using CSS pointer-events: none
property to cover other element over the
target element

Click

z-index: -1

opacity: 0.1 pointer-event: none

Click

slide 27

[“Clickjacking: Attacks and Defenses”]

Partial Overlays and Cropping

• Overlay other elements onto an iframe using
CSS z-index property or Flash Window Mode
wmode=direct property

• Wrap target element in a new iframe and
choose CSS position offset properties

slide 28

[“Clickjacking: Attacks and Defenses”]

z-index: 1 PayPal iframe PayPal iframe

Drag-and-Drop API

• Modern browsers support drag-and-drop API

• JavaScript can use it to set data being dragged
and read it when it’s dropped

• Not restricted by the same origin policy:
data from one origin can be dragged to a
frame
of another origin
– Reason: drag-and-drop can only be initiated by

user’s mouse gesture, not by JavaScript on its own

slide 29

[“Next Generation Clickjacking”]

Abusing Drag-and-Drop API

slide 30

[“Next Generation Clickjacking”]

Frog. Blender. You know what to do.

1. Bait the user to click and start dragging

2. Invisible iframe with attacker’s
text field under mouse cursor,
use API to set data being dragged

3. Invisible iframe from another
origin with a form field

Attack webpage

666666
666666
666666

With two drag-and-drops
(simulated scrollbar, etc.),
can select and extract
arbitrary content from
another origin

Fake Cursors

• Use CSS cursor property and JavaScript to
simulate a fake cursor icon on the screen

slide 31

[“Clickjacking: Attacks and Defenses”]

Real cursor icon Fake cursor icon

cursor: none

Keyboard “Strokejacking”

• Simulate an input field getting focus, but
actually the keyboard focus is on target
element, forcing user to type some unwanted
information into target element

slide 32

[“Clickjacking: Attacks and Defenses”]

Transfer

Bank Transfer
Bank Account: ________
Amount: ___________ USD

Typing Game
Type whatever screen shows to
you

Xfpog95403poigr06=2kfpx

[__________________________]

Attacker’s page Hidden iframe within attacker’s page

9540

3062

Solution: Frame Busting

• I am a page owner

• All I need to do is make sure that my web
page is not loaded in an enclosing frame …

Clickjacking: solved!

– Does not work for FB “Like” buttons and such, but
Ok

• How hard can this be?if (top != self)
top.location.href = location.href

slide 33

Frame Busting in the Wild

• Survey by Gustav Rydstedt, Elie Burzstein, Dan
Boneh, Collin Jackson

Following slides shamelessly jacked from Rydstedt

slide 34

