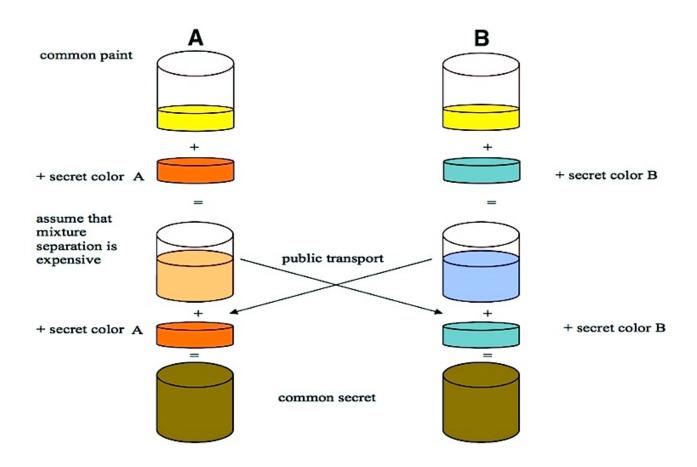
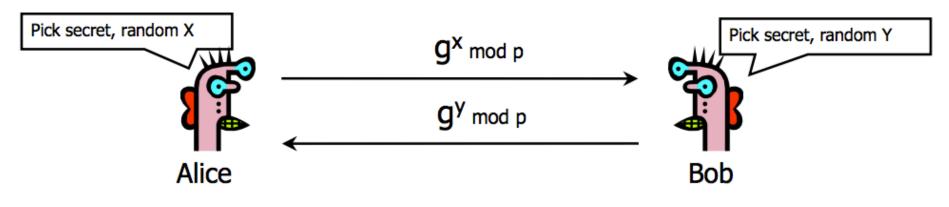
# CSE 484 / CSE M 584 Computer Security: Cryptography


TA: Adrian Sham
adrsham@cs
Original slides by Franzi

[Examples/Images thanks to Wikipedia.]


#### Lab 1 Deadline Reminders

- Lab 1 Final due next week (5/1, 5pm).
- Upcoming office hours:
  - Tomorrow (Friday) 9:30 am Michael & Adrian
  - Monday 9:30 am Franzi
  - Wednesday 3:30 pm Adrian & Peter
  - Thursday 12:30 pm Peter & Michael

## Illustration of DH as paint mixing



#### **DH Summary**



Compute  $k=(g^y)^x=g^{xy} \mod p$ 

Compute  $k=(g^x)^y=g^{xy} \mod p$ 

• Public info: p (large prime) and g (generator of  $Z_p^*$ )

 $Z_p^*=\{1, 2 \dots p-1\}; \forall a \in Z_p^* \exists i \text{ such that } a=g^i \text{ mod } p$ 

#### **RSA Summary**

- Key generation
  - Generate large primes p, q
    - Say, 1024 bits each (need primality testing, too)
  - Compute n = pq and  $\varphi(n) = (p-1)(q-1)$
  - Choose small e, relatively prime to  $\varphi(n)$
  - Compute unique d such that ed =  $1 \mod \varphi(n)$
  - Public key = (e,n); private key = (d,n)
- Encryption of m: c = m<sup>e</sup> mod n
  - Modular exponentiation by repeated squaring
- Decryption of c: c<sup>d</sup> mod n = (m<sup>e</sup>)<sup>d</sup> mod n = m

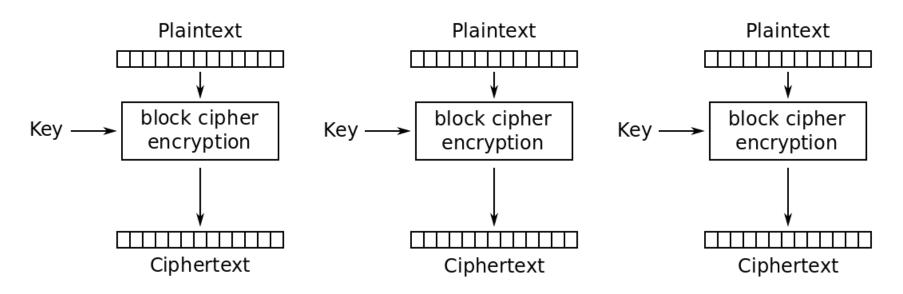
#### Sample RSA Decryption

- 26 2 15 13 7 14 13 13 1 28 14 15 13
  14 20 9 6 31 25 26 14 16 23 15 26 2 6 13 1
- p=3, q=11, n=33, e=7, d=3

A-1 B-2 C-3 D-4 E-5 F-6 G-7 H-8 I-9 J-10 K-11
 L-12 M-13 N-14 O-15 P-16 Q-17 R-18 S-19 T-20
 U-21 V-22 W-23 X-24 Y-25 Z-26

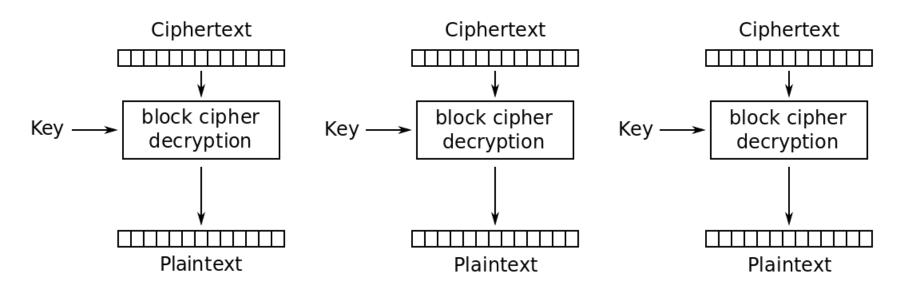
#### Sample RSA Decryption

- How to compute d?
  - Recall:  $ed = 1 \mod \varphi(n)$  (where  $\varphi(n) = (p-1)(q-1)$ )
  - So d is inverse of e mod  $\varphi(n)$ .
  - How to compute modular inverse?
    - Use extended Euclidean algorithm
    - ... or Wolfram Alpha 😊
    - Note that this is hard if you don't know φ(n) (i.e., can't factor n).


## Public Key Crypto Summary

- Diffie-Hellman: Why is it secure?
  - Discrete log; computational DH problem; decisional DH problem are hard.
- RSA: Why is it secure?
  - Taking e<sup>th</sup> root is hard; Factoring is hard.

## Cryptography Summary

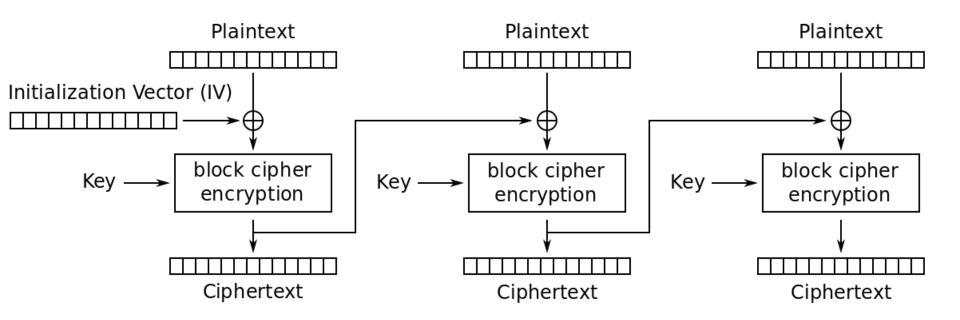

- Goal: Privacy
  - One-time pad
  - Block ciphers w/ symmetric keys (e.g., DES, AES)
    - Modes: EBC, CBC, CTR
  - Public key crypto (e.g., Diffie-Hellman, RSA)
- Goal: Integrity
  - MACs, often using hash functions (e.g, MD5, SHA-256)
- Goal: Privacy and Integrity
  - Encrypt-then-MAC (why?)
- Goal: Authenticity (and Integrity)
  - Digital signatures (e.g., RSA, DSS)

## Block Cipher Mode: ECB



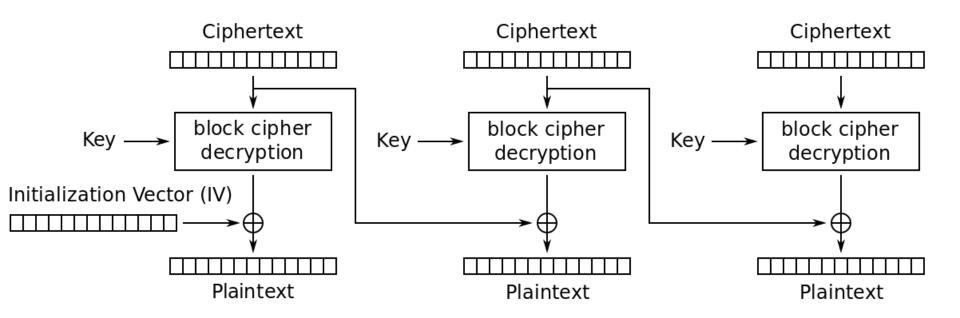
Electronic Codebook (ECB) mode encryption

## Block Cipher Mode: ECB




Electronic Codebook (ECB) mode decryption

#### ECB Pros and cons

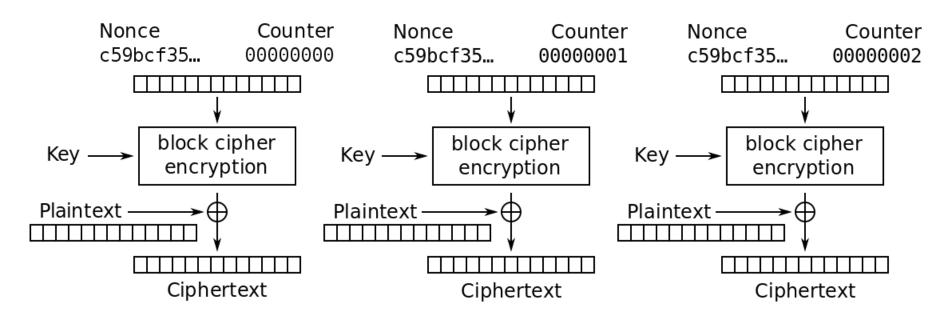

- Encryption and decryption parallelizable
- Does not hide data patterns well, not recommended

#### Block Cipher Mode: CBC



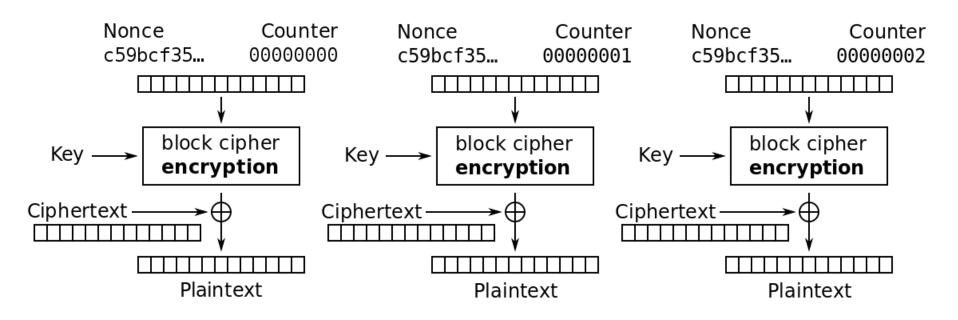
Cipher Block Chaining (CBC) mode encryption

## Block Cipher Mode: CBC




Cipher Block Chaining (CBC) mode decryption

#### CBC Pros and cons


- Encryption not parallelizable
- Decryption is parallelizable

## Block Cipher Mode: CTR



Counter (CTR) mode encryption

## Block Cipher Mode: CTR



Counter (CTR) mode decryption

#### Pros and cons

- Encryption and decryption parallelizable
- CBC and CTR usage recommended by Yoshi, Niels and Bruce Schneier! (Cryptography Engineering, 2010)

#### **CBC-MAC** question



Given a message M with tag T (aka CBC-MAC(M)=T), can you construct a message M' (not necessarily the same length as M) for which the tag is \*also\* T, aka CBC-MAC(M')=T?

## **Password Salting**

- Servers shouldn't store passwords, but password hashes. (Why?)
- Threat: rainbow tables (pre-computed password hashes)
- Solution: salt
  - Each password is hashed/stored with a random value. Now a pre-computed table is useless.
  - Other benefits?

#### Real world example, by xkcd

HACKERS RECENTLY LEAKED 153 MILLION ADOBE USER EMAILS, ENCRYPTED PASSWORDS, AND PASSWORD HINTS.

ADOBE ENCRYPTED THE PASSWORDS IMPROPERLY, MISUSING BLOCK-MODE 3DES. THE RESULT IS SOMETHING WONDERFUL:

| USER PASSWORD                                         | HINT                                         |  |
|-------------------------------------------------------|----------------------------------------------|--|
| 4e18acc1ab27a2d6<br>4e18acc1ab27a2d6                  | WEATHER VANE SWORD                           |  |
| 4e18acclab27a2d6 a0a2876eblea1fca                     | NAME1                                        |  |
| 8babb6299e06eb6d<br>8babb6299e06eb6d a0a2876eb]ea]fca | DUH                                          |  |
| 8babb6299e066b6d 85e9da8la8a78adc                     | 57                                           |  |
| 4e18acc1ab27a2d6                                      | FAVORITE OF 12 APOSTLES                      |  |
| 1ab29ae86da6e5ca 7a2d6a0a2876eb1e                     | WITH YOUR OWN HAND YOU<br>HAVE DONE ALL THIS |  |
| a1F9b2b6299e7a2b eadec1e6ab797397                     |                                              |  |
| a1f96266299e7626 617a60277727ad85                     |                                              |  |
| 3973867adb0b8af7 617ab0277727ad85<br>1ab29ae86da6e5ca | 50GARLAND<br>NAME+JERSEY#                    |  |
| 877ab7889d3862b1                                      | ALPHA                                        |  |
| 877a67889d386261                                      | 10111                                        |  |
| 877ab7889d3862b1                                      |                                              |  |
| 877ab7889d3862b1                                      | OBVIOUS                                      |  |
| 877a678896386261                                      | MICHAEL JACKSON                              |  |
| 38a7c9279cadeb44 9dcald79d4dec6d5                     |                                              |  |
| 38a7c9279cadeb44 9dcald79d4dec6d5                     | HE DID THE MASH, HE DID THE                  |  |
| 38a7c9279cadeb44                                      | PURLOINED                                    |  |
| 080e57U507b70f70 9dc01d79d4der6J5                     | FOV LIMITES & POKEMION                       |  |

THE GREATEST CROSSWORD PUZZLE
IN THE HISTORY OF THE WORLD

#### Additional Resources

- Stanford online crypto class: https://class.coursera.org/crypto-preview/class
- Books:
  - "The Codebreakers" by David Kahn
  - "The Code Book" by Simon Singh