CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography: Symmetric Encryption (continued), Hash Functions, Message Authentication Codes

Spring 2015

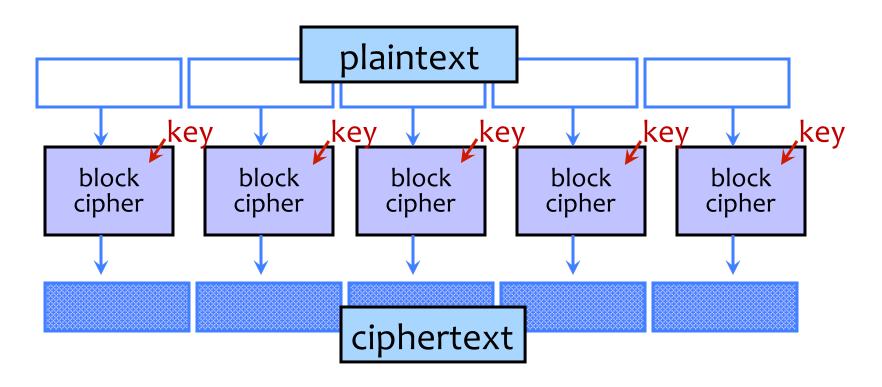
Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Reminders

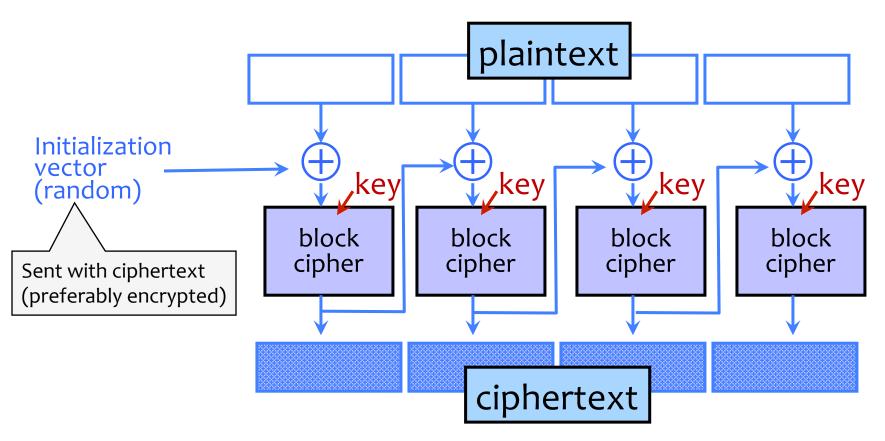
- Homework #1 due today @5pm
- Checkpoint for lab #1 due Monday @5pm
 - Send key to Peter!!!11

Electronic Code Book (ECB) Mode



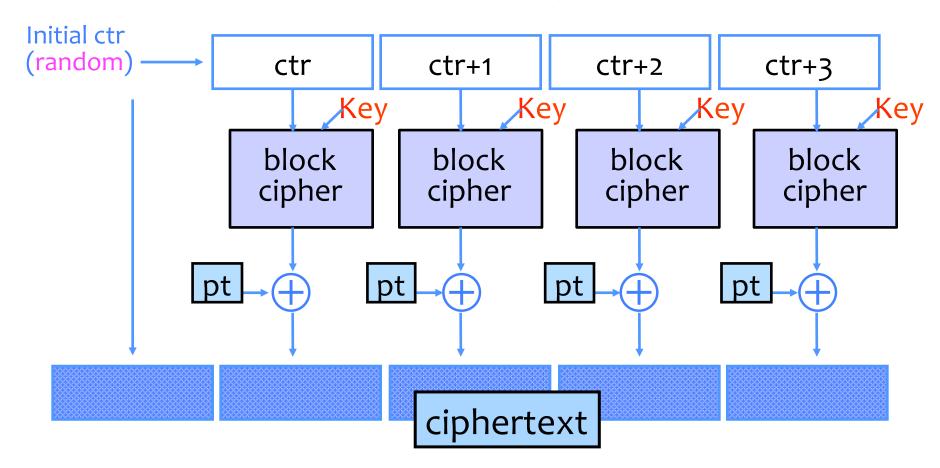
- Identical blocks of plaintext produce identical blocks of ciphertext
- No integrity checks: can mix and match blocks

Cipher Block Chaining (CBC) Mode: Encryption



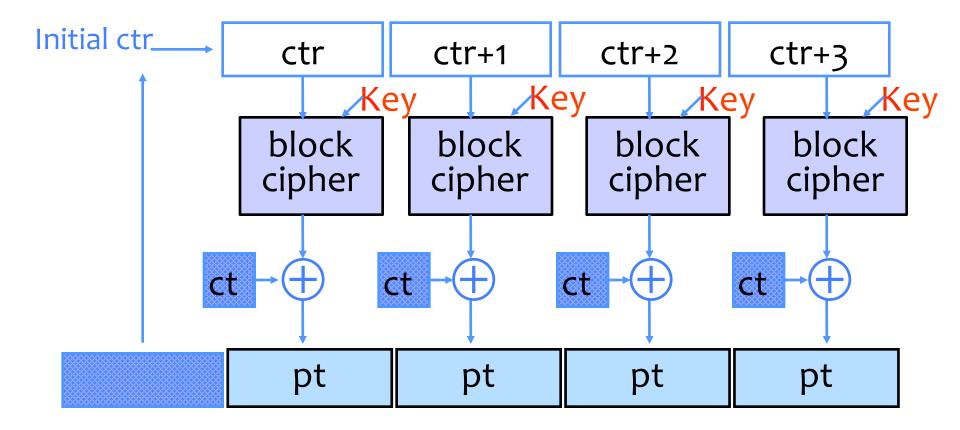
- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
 - Still does not guarantee integrity

Counter Mode (CTR): Encryption



- Identical blocks of plaintext encrypted differently
- Still does not guarantee integrity; Fragile if ctr repeats

Counter Mode (CTR): Decryption



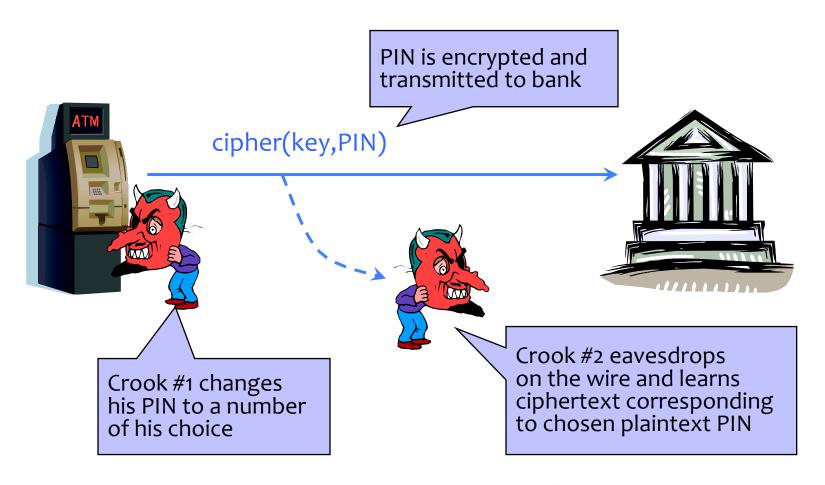
When is an Encryption Scheme "Secure"?

- Hard to recover the key?
 - What if attacker can learn plaintext without learning the key?
- Hard to recover plaintext from ciphertext?
 - What if attacker learns some bits or some function of bits?
- Fixed mapping from plaintexts to ciphertexts?
 - What if attacker sees two identical ciphertexts and infers that the corresponding plaintexts are identical?
 - Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?

- Attackers knows ciphertext and encryption algthm
 - What else does the attacker know? Depends on the application in which the cipher is used!
- Ciphertext-only attack
- KPA: Known-plaintext attack (stronger)
 - Knows some plaintext-ciphertext pairs
- CPA: Chosen-plaintext attack (even stronger)
 - Can obtain ciphertext for any plaintext of his choice
- CCA: Chosen-ciphertext attack (very strong)
 - Can decrypt any ciphertext <u>except</u> the target

Chosen Plaintext Attack



... repeat for any PIN value

Very Informal Intuition

Minimum security requirement for a modern encryption scheme

- Security against chosen-plaintext attack (CPA)
 - Ciphertext leaks no information about the plaintext
 - Even if the attacker correctly guesses the plaintext, he cannot verify his guess
 - Every ciphertext is unique, encrypting same message twice produces completely different ciphertexts
- Security against chosen-ciphertext attack (CCA)
 - Integrity protection it is not possible to change the plaintext by modifying the ciphertext

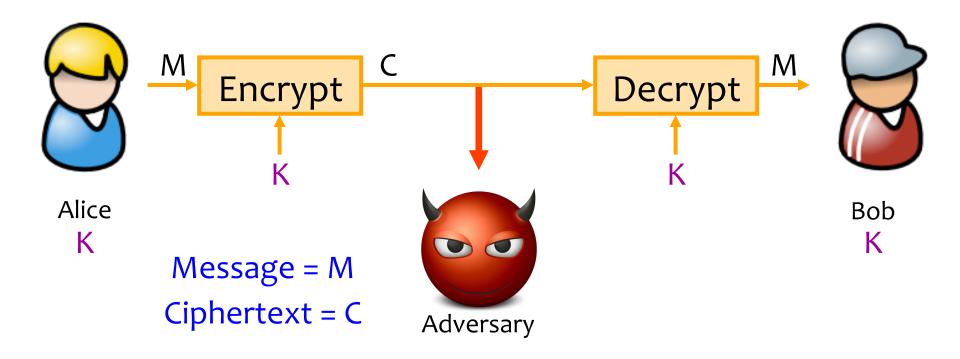
Why Hide Everything?

- Leaking even a little bit of information about the plaintext can be disastrous
- Electronic voting
 - 2 candidates on the ballot (1 bit to encode the vote)
 - If ciphertext leaks the parity bit of the encrypted plaintext, eavesdropper learns the entire vote
- Also, want a strong definition, that implies other definitions (like not being able to obtain key)

Message Authentication Codes

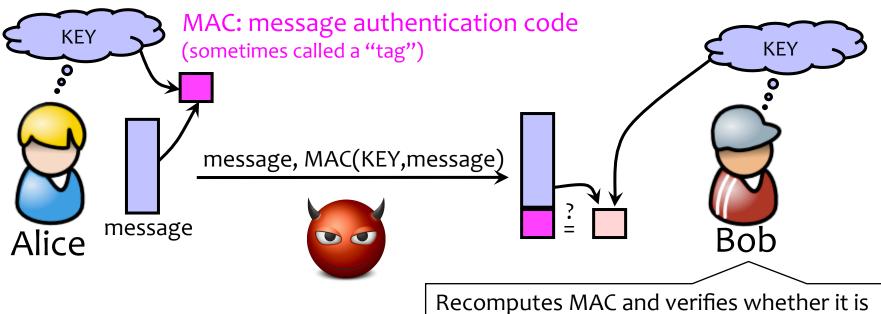
So Far: Achieving Privacy

Encryption schemes: A tool for protecting privacy.



Now: Achieving Integrity

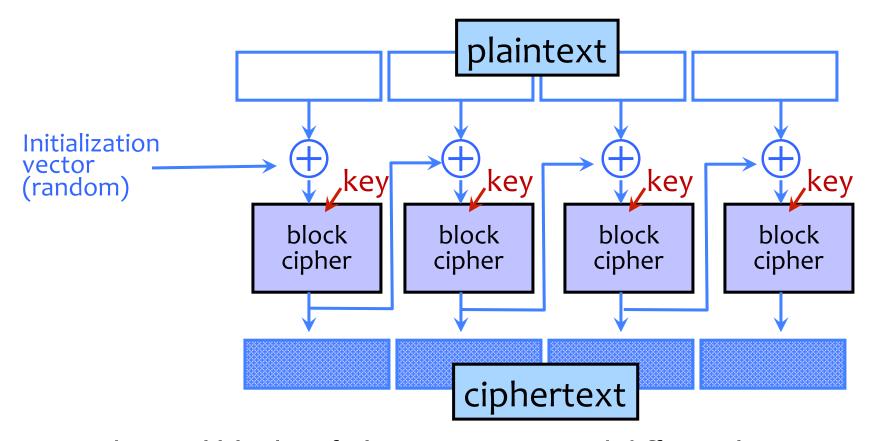
Message authentication schemes: A tool for protecting integrity.



equal to the MAC attached to the message

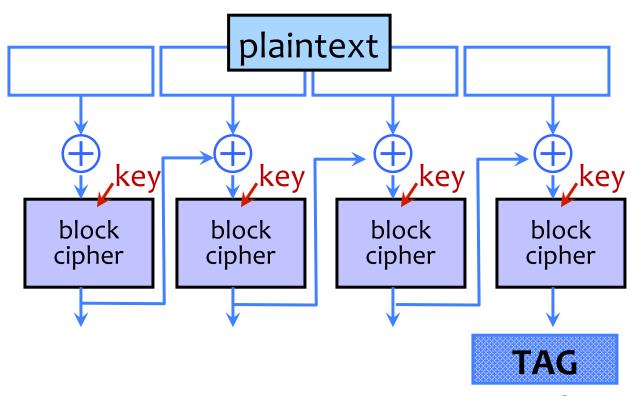
Integrity and authentication: only someone who knows KEY can compute correct MAC for a given message.

Reminder: CBC Mode Encryption



- Identical blocks of plaintext encrypted differently
- Last cipherblock depends on entire plaintext
 - Still does not guarantee integrity

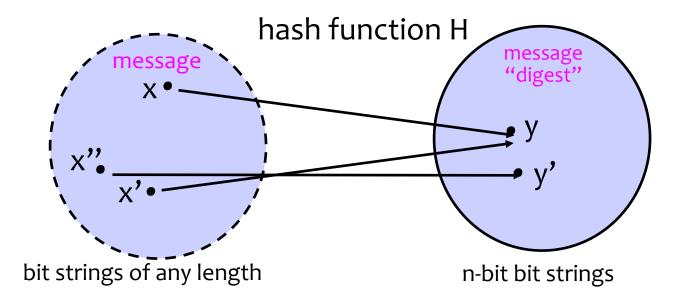
CBC-MAC



- Not secure when system may MAC messages of different lengths.
 - NIST recommends a derivative called CMAC [FYI only]

Hash Functions

Hash Functions: Main Idea



- Hash function H is a lossy compression function
 - Collision: h(x)=h(x') for distinct inputs x, x'
- H(x) should look "random"
 - Every bit (almost) equally likely to be 0 or 1
- <u>Cryptographic</u> hash function needs a few properties...

Property 1: One-Way

- Intuition: hash should be hard to invert
 - "Preimage resistance"
 - Let $h(x') = y \in \{0,1\}^n$ for a random x'
 - Given y, it should be hard to find any x such that h(x)=y
- How hard?
 - Brute-force: try every possible x, see if h(x)=y
 - SHA-1 (common hash function) has 160-bit output
 - Expect to try 2¹⁵⁹ inputs before finding one that hashes to y.

Property 2: Collision Resistance

Should be hard to find x≠x' such that h(x)=h(x')

Birthday Paradox

- Are there two people in the first 1/3 of this classroom that have the same birthday?
 - 365 days in a year (366 some years)
 - Pick one person. To find another person with same birthday would take on the order of 365/2 = 182.5 people
 - Expect birthday "collision" with a room of only 23 people.
 - For simplicity, approximate when we expect a collision as sqrt(365).
- Why is this important for cryptography?
 - 2¹²⁸ different 128-bit values
 - Pick one value at random. To exhaustively search for this value requires trying on average 2¹²⁷ values.
 - Expect "collision" after selecting approximately 2⁶⁴ random values.
 - 64 bits of security against collision attacks, not 128 bits.

Property 2: Collision Resistance

- Should be hard to find x≠x' such that h(x)=h(x')
- Birthday paradox (informal)
 - Let t be the **number** of values x,x',x''... we need to look at before finding the first pair x,x' s.t. h(x)=h(x')
 - What is probability of collision for each pair x,x'? $1/2^n$
 - How many **pairs** would we need to look at before finding the first collision? $O(2^n)$
 - How many pairs x, x' total? Choose(t,2)=t(t-1)/2 ~ O(t²)
 - What is t, the **number** of values we need to look at? $2^{n/2}$
- Brute-force collision search is only $O(2^{n/2})$, not $O(2^n)$
 - For SHA-1, this means $O(2^{80})$ vs. $O(2^{160})$

One-Way vs. Collision Resistance

- One-wayness does <u>not</u> imply collision resistance
 - Suppose g is one-way
 - Define h(x) as g(x') where x' is x except the last bit
 - h is one-way (to invert h, must invert g)
 - Collisions for h are easy to find: for any x, h(x0)=h(x1)
- Collision resistance does <u>not</u> imply one-wayness
 - Suppose g is collision-resistant
 - Define y=h(x) to be ox if x is n-bit long, 1g(x) otherwise
 - Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts with 1, then must find collisions in g
 - h is not one way: half of all y's (those whose first bit is 0) are easy to invert (how?); random y is invertible with probab. ½