CSE 484 [CSE M 584: Computer Security and Privacy

Software Security:
Misc and Principles

Spring 2015

Franziska (Franzi) Roesner
franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John
Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Looking Forward

* Today: one more day on software security
* Friday: guest lecture by David Aucsmith
* Next week: start crypto

e Ethics form all done - yay!
* Homework #1 due April 17
e Lab #1 out TODAY

— Please send a group name and a public key via email
(pasted, NOT attached) to Peter <neyp@cs.washington.edu>

— Instructions for creating a key are in the lab description

Section this week: Lab 1

4/8/15 CSE 484 [CSE M 584 - Spring 2015

Another Type of Vulnerability

e Consider this code:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O RDONLY);

}

* Goal: Open only regular files (not symlink, etc)
* What can go wrong?

TOCTOU (Race Condition)

e TOCTOU ==Time of Check to Time of Use:

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");

return -1;

}
return open(path, O RDONLY);

}
* Goal: Open only regular files (not symlink, etc)

* Attacker can change meaning of path between stat
and open (and access files he or she shouldn’t)

Another Type of Vulnerability

e Consider this code:

char buf[80];
void vulnerable() {

}

int len = read int from network();

char *p = read string from network();

if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

Integer Overflow and Implicit Cast

e Consider this code: If len is negative, may
copy huge amounts

eliizns S| gL ; of input into buf.

void vulnerable() {

int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

Another Example

size t len = read int from network();

char *buf;
buf = malloc(len+5);

read(fd, buf, len);

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)
CSE 484 | CSE M 584 - Spring 2015

4/8/15

Integer Overflow and Implicit Cast

size t len = read int from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

* What if lenis large (e.g., len = oxFFFFFFFF)?
* Thenlen + 5 =4 (on many platforms)

* Result: Allocate a 4-byte buffer, then read a lot of
data into that bufter.

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)
4/8/15 CSE 484 | CSE M 584 - Spring 2015

Password Checker

* Functional requirements

— PwdCheck(RealPwd, CandidatePwd) should:
 Return TRUE if RealPwd matches CandidatePwd
 Return FALSE otherwise

— RealPwd and CandidatePwd are both 8 characters long
* Implementation (like TENEX system)

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

* (learly meets functional description

4/8/15 CSE 484 | CSE M 584 - Spring 2015

Attacker Model

PwdCheck (RealPwd, CandidatePwd) // both 8 chars
for i =1 to 8 do
if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

* Attacker can guess CandidatePwds through some
standard interface

* Naive: Tryall 2568 =18,446,744,073,709,551,616
possibilities

* Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then thirq,

— Total tries: 256*8 = 2048

4/8/15 CSE 484 | CSE M 584 - Spring 2015

10

Timing Attacks

* Assume there are no “typical” bugs in the software
— No buffer overflow bugs
— No format string vulnerabilities
— Good choice of randomness
— Good design
* The software may still be vulnerable to timing
attacks
— Software exhibits input-dependent timings

* Complex and hard to fully protect against

4/8/15 CSE 484 | CSE M 584 - Spring 2015 1

Other Examples

* Plenty of other examples of timings attacks

— AES cache misses
* AES is the “Advanced Encryption Standard”
 Itisusedin SSH, SSL, IPsec, PGP, ...

— RSA exponentiation time

* RSAis a famous public-key encryption scheme

* It’s also used in many cryptographic protocols and
products

4/8/15 CSE 484 [CSE M 584 - Spring 2015

12

Randomness Issues

* Many applications (especially security ones)
require randomness

* Explicit uses:
— Generate secret cryptographic keys
— Generate random initialization vectors for encryption

e Other “non-obvious” uses:

— Generate passwords for new users

— Shuffle the order of votes (in an electronic voting
machine)

— Shuffle cards (for an online gambling site)

4/8/15 CSE 484 | CSE M 584 - Spring 2015

13

C’s rand() Function

 Chas a built-in random function: rand()

unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int) (next/65536) % 32768;

N

}
/* srand: set seed for rand() */
void srand(unsigned int seed) {

next = seed;

}

* Problem: don’t use rand() for security-critical applications!
— Given a few sample outputs, you can predict subsequent ones

4/8/15 CSE 484 | CSE M 584 - Spring 2015 14

Problems in Practice

* Oneinstitution used gsomething like) rand() to
generate passwords for new users

— Given your password, you could predict the passwords
of other users

« Kerberos (1988 -1996)
— Random number generator improperly seeded

— Possible to trivially break into machines that rely upon
Kerberos for authentication

* Online gambling websites
— Random numbers to shuffle cards
— Real money at stake
— But what if poor choice of random numbers?

4/8/15 CSE 484 | CSE M 584 - Spring 2015

15

&5 A World of Action!

. Fold | Check | Bet(s5)

6k
0
G

-

D

mamajoe: Hey guys, Big B is in!

Leave 584330

CSE 484 [CSE M 584 - Spring 2015

% PokerGUI

Site Parameters Cancel Game Parameters
Hour Offset I 4 Flop Num Players m
Minute Offset I 1 Your Position v
44 (B2 o a8 ?,.-P.I:z- [=
Second Offset I 52 LR
ool b .fﬁ'*& : . * 010.5 Your Cards IBC IJh
+ 4 * > L X + b
Shufle Buton | : b L Flop s [5c [2d
Time |15;21;40 Show Cards
FOLD FOLD FOLD FOLD FOLD FOLD FOLD FOLD 3 1 2
0e | [bve
2o o9
e ’QQO
LA 2 L 3
| | | | | [Player3 | Player2 | YOU

More details: “How We Learned to Cheat at Online Poker: A Study in Software Security”
http://www.cigital.com/papers/download/developer_gambling.php

4/8/15 CSE 484 | CSE M 584 - Spring 2015 17

&8 A World of Action!

mamajoe: Hey guys, Big B is in!

Leave 584330

CSE 484 [CSE M 584 - Spring 2015

PS3 and Randomness

* Example Current Event report from a past
iteration of 484

— https://catalyst.uw.edu/gopost/conversation/kohno/
452868

4/8/15 CSE 484 | CSE M 584 - Spring 2015 19

Quote

PS3 Exploit

Today, January 3rd, George “Geohot” Hotz found and released the private root key for Sony’s
Playstation 3 (PS3) video game console (http://www.geohot.com/). What this means is that homebrew
software enthusiasts, scientists, and software pirates can now load arbitrary software on the PS3 and
sign it using this key, and the system will execute it as trusted code. Legitimately, this allows Linux and
other operating systems to take advantage of the PS3's cell processor architecture; however, it also
opens up avenues of software piracy previously impossible on Sony's system without requiring any
hardware modifications to the system (previous access of this kind required a USB hardware dongle)

How it Was Done

This was enabled by a cryptographic error by Sony developers in their update process. In the DSA
signature algorithm, a number k is chosen from a supposedly random source for each signed message.
So long as the numbers are unique, the system is secure, but duplicating a random number between
messages can expose the private key to an untrusted party using simple mathematics
(http://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/). Sony used the exact same
“random value” k for all updates pushed to the system, making the signature scheme worthless.

The Most Secure

After Sony removed the “other OS" functionality of the PS3, greater scrutiny was placed on the PS3.
Since it's release in 2006, the Playstation 3 was considered the most secure of the three major video
game consoles, as it was the only console without a “root” compromise in the four years since release
(there were vulnerabilities limited to specific firmware or that required specialized hardware, but nothing
that provided unfettered access). By comparison, Microsoft's Xbox 360 was cracked over 4 years ago
(http://www.theregister.co.uk/2007/03/01/xbox_hack), and the Wii was cracked over 2 years ago
(http://wiibrew.org/wiki/Index.php).

Cullen Walsh
Mark Jordan
Peter Lipay

Other Problems

* Key generation

— Ubuntu removed the randomness from SSL, creating
vulnerable keys for thousands of users/servers

— Undetected for 2 years (2006-2008)

* Live CDs, diskless clients
— May boot up in same state every time

* Virtual Machines

— Save state: Opportunity for attacker to inspect the
pseudorandom number generator’s state

— Restart: May use same “psuedorandom” value more
than once

4/8/15 CSE 484 [CSE M 584 - Spring 2015

21

DILBERT By Scort Apawms

TOUR OF ACCOUNTING

OVER HERE
Wt HAVE OUR

RANDOM NUMBER
GENERATOR.

www. dlibert.com ecottademe®solcom

NINE NINE
NINE NINE
NINE NINE

1e[a%[o, © 2001 United Feature Syndicate. Inc

ﬁgﬁ THAT'S THE
i PROBLEM
: WITH RAN-
THAT'S |
e bom» DOMNESS
YOU CAN
L NEVER BE

SURE.

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// quaranteed to be random.

4/8/15

https://xkcd.com/221/

CSE 484 [CSE M 584 - Spring 2015

22

Obtaining Pseudorandom Numbers

* For security applications, want “cryptographically
secure pseudorandom numbers”

* Libraries include cryptographically secure
pseudorandom number generators

* Linux:
— /dev/random

— [dev/urandom - nonblocking, possibly less entropy

* Internally:
— Entropy pool gathered from multiple sources

4/8/15 CSE 484 | CSE M 584 - Spring 2015 23

Where do (good) random
numbers come from?

* Humans: keyboard, mouse input

* Timing: interrupt firing, arrival of packets on
the network interface

* Physical processes: unpredictable physical
phenomena

4/8/15 CSE 484 | CSE M 584 - Spring 2015

Software Security:
So what do we do?

4/8/15 CSE 484 | CSE M 584 - Spring 2015

Fuzz Testing

* Generate “random” inputs to program

— Sometimes conforming to input structures (file
formats, etc.)

* See if program crashes
— If crashes, found a bug
— Bug may be exploitable

* Surprisingly effective
* Now standard part of development lifecycle

4/8/15 CSE 484 | CSE M 584 - Spring 2015 26

General Principles

* Checkinputs

4/8/15 CSE 484 | CSE M 584 - Spring 2015

Shellshock

* Checkinputs: not just to prevent buffer overflows

» Example: Shellshock (September 2014)

— Vulnerable servers processed input from web requests,
passed (user-provided) environment variables (like user
agent, cookies...) to CGl scripts

— Maliciously crafted environment variables exploited a
bug in bash to execute arbitrary code

env x='() { :;}; echo OOPS' bash -c

4/8/15 CSE 484 | CSE M 584 - Spring 2015 28

General Principles

* Checkinputs

* Checkall return values

* Least privilege

 Securely clear memory (passwords, keys, etc.)
* Failsafe defaults

* Defensein depth
— Also: prevent, detect, respond

NOT: security through obscurity

4/8/15 CSE 484 | CSE M 584 - Spring 2015

General Principles

* Reduce size of trusted computing base (TCB)
* Simplicity, modularity
— But: Be careful at interface boundaries!
* Minimize attack surface
* Use vetted component
* Security by design
— But: tension between security and other goals

* Open design? Open source? Closed source?
— Different perspectives

4/8/15 CSE 484 | CSE M 584 - Spring 2015

30

