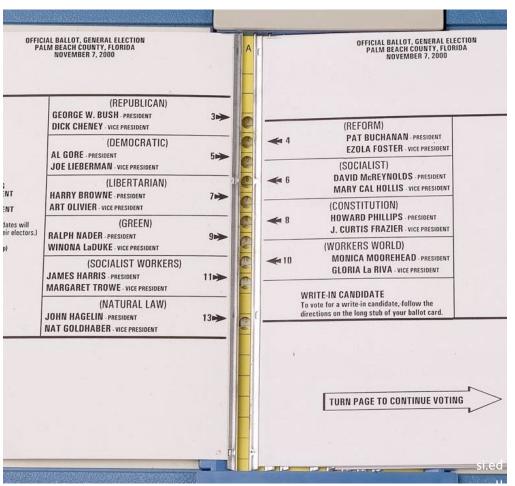
CSE 484 / CSE M 584: Computer Security and Privacy


Usable Security

Spring 2015

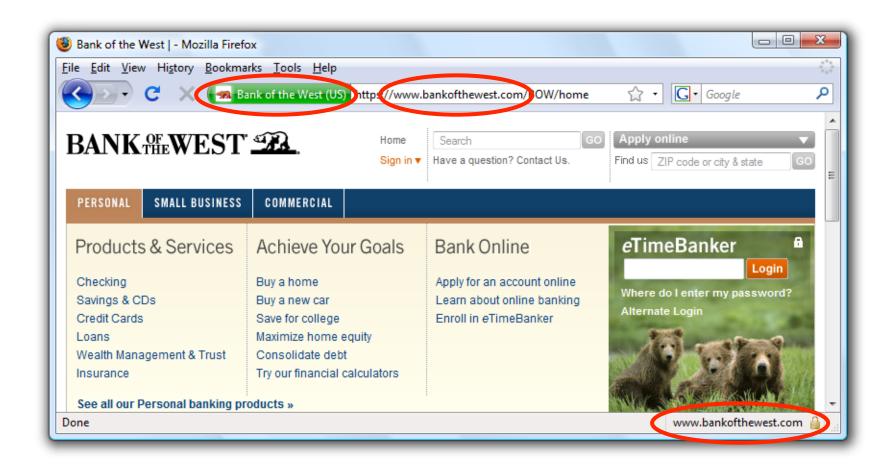
Franziska (Franzi) Roesner franzi@cs.washington.edu

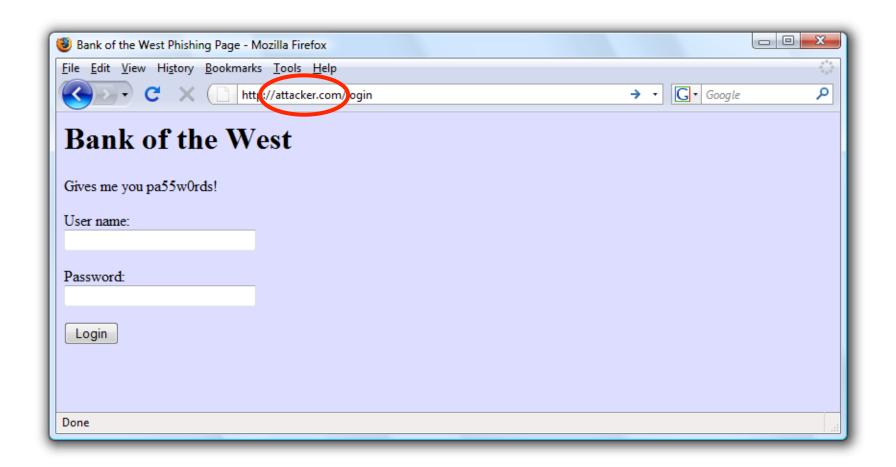
Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Poor Usability Causes Problems

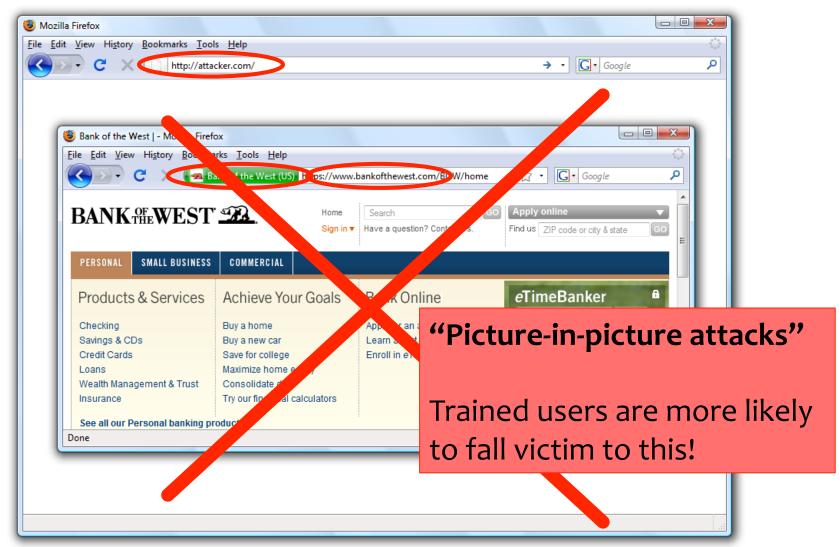
Importance in Security

- Why is usability important?
 - People are the critical element of any computer system
 - People are the real reason computers exist in the first place
 - Even if it is <u>possible</u> for a system to protect against an adversary, people may use the system in other, <u>less secure</u> ways


Today


- 3 case studies
 - Phishing
 - SSL warnings
 - Password managers
- Step back: root causes of usability problems, and how to address

Case Study #1: Phishing


A Typical Phishing Page

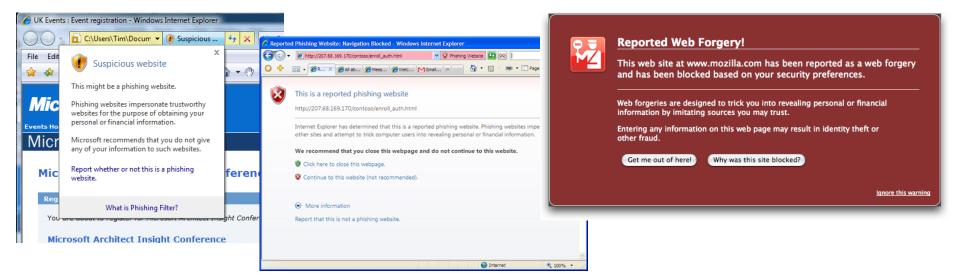

Experiments at Indiana University

- Reconstructed the social network by crawling sites like Facebook, MySpace, LinkedIn and Friendster
- Sent 921 Indiana University students a spoofed email that appeared to come from their friend
- Email redirected to a spoofed site inviting the user to enter his/her secure university credentials
 - Domain name clearly distinct from indiana.edu
- 72% of students entered their real credentials into the spoofed site

More Details

- Control group: 15 of 94 (16%) entered personal information
- Social group: 349 of 487 (72%) entered personal information
- 70% of responses within first 12 hours
- Adversary wins by gaining users' trust
- Also: If a site looks "professional", people likely to believe that it is legitimate

Phishing Warnings


Active (IE)

Are Phishing Warnings Effective?

- CMU study of 60 users
- Asked to make eBay and Amazon purchases
- All were sent phishing messages in addition to the real purchase confirmations
- Goal: compare <u>active</u> and <u>passive</u> warnings

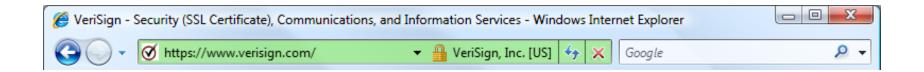
Active vs. Passive Warnings

- Active warnings significantly more effective
 - Passive (IE): 100% clicked, 90% phished
 - Active (IE): 95% clicked, 45% phished
 - Active (Firefox): 100% clicked, 0% phished

Passive (IE)

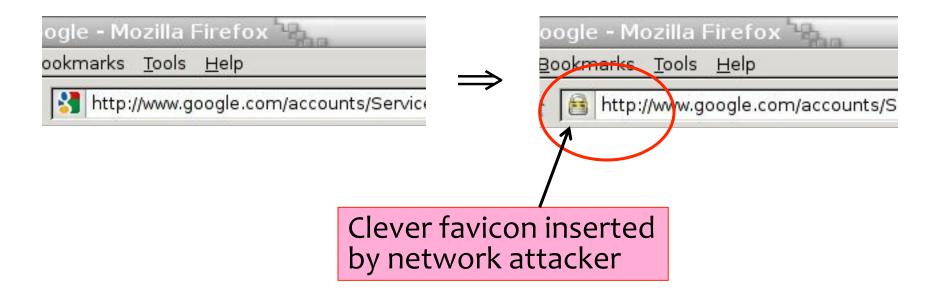
Active (IE)

Active (Firefox)

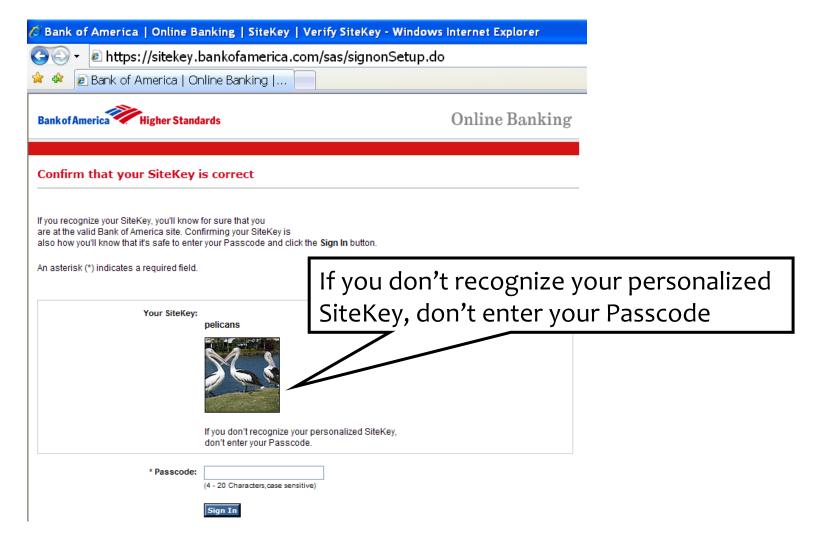

User Response to Warnings

- Some fail to notice warnings entirely
 - Passive warning takes a couple of seconds to appear; if user starts typing, his keystrokes dismiss the warning
- Some saw the warning, closed the window, went back to email, clicked links again, were presented with the same warnings... repeated 4-5 times
 - Conclusion: "website is not working"
 - Users never bothered to read the warnings, but were still prevented from visiting the phishing site
 - Active warnings work!

Why Do Users Ignore Warnings?


- Don't trust the warning
 - "Since it gave me the option of still proceeding to the website, I figured it couldn't be that bad"
- Ignore warning because it's familiar (IE users)
 - "Oh, I always ignore those"
 - "Looked like warnings I see at work which I know to ignore"
 - "I thought that the warnings were some usual ones displayed by IE"
 - "My own PC constantly bombards me with similar messages"

The Lock Icon



- Goal: identify secure connection
 - SSL/TLS is being used between client and server to protect against active network attacker
- Lock icon should only be shown when the page is secure against network attacker
 - Semantics subtle and not widely understood by users
 - Whose certificate is it??
 - Problem in user interface design

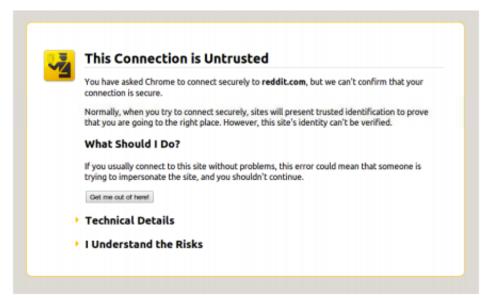
Will You Notice?

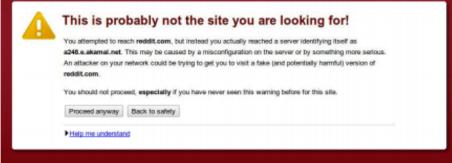
Site Authentication Image (SiteKey)

Do These Indicators Help?

- "The Emperor's New Security Indicators"
 - http://www.usablesecurity.org/emperor/emperor.pdf

		Group				
Score	First chose not to enter password	1	2	3	$1 \cup 2$	Total
0	upon noticing HTTPS absent	0 0%	0 0%	0 0%	0 0%	0 0%
1	after site-authentication image removed	0 0%	0 0%	2 9%	0 0%	2 4%
2	after warning page	8 47%	5 29%	12 55%	13 37%	25 44%
3	never (always logged in)	10 53%	12 71%	8 36%	22 63%	30 53%
	Total	18	17	22	35	57


Users don't notice the absence of indicators!


Case Study #2: Browser SSL Warnings

 Design question: How to alert the user if a site's SSL certificate is untrusted?

Firefox vs. Chrome Warning

33% vs. 70% clickthrough rate

#	Condition	CTR	N
1	Control (default Chrome warning)		
2	Chrome warning with policeman		
3	Chrome warning with criminal		
4	Chrome warning with traffic light		
5	Mock Firefox		
6	Mock Firefox, no image		
7	Mock Firefox with corporate styling		
	Table 1. Click-through rates and sample size f	or condition	ns.

#	Condition	CTR	N
1	Control (default Chrome warning)	67.9%	17,479
2	Chrome warning with policeman		
3	Chrome warning with criminal		
4	Chrome warning with traffic light		
5	Mock Firefox		
6	Mock Firefox, no image		
7	Mock Firefox with corporate styling		
	Table 1. Click-through rates and sample size	for conditi	ions.

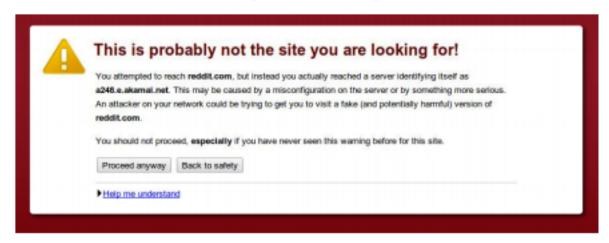


Figure 1. The default Chrome SSL warning (Condition 1).

#	Condition	CTR	N
1	Control (default Chrome warning)	67.9%	17,479
2	Chrome warning with policeman	68.9%	17,977
3	Chrome warning with criminal	66.5%	18,049
4	Chrome warning with traffic light	68.8%	18,084
5	Mock Firefox		
6	Mock Firefox, no image		
7	Mock Firefox with corporate styling		
	Table 1. Click-through rates and sample size for conditions.		

Figure 1. The default Chrome SSL warning (Condition 1).

#	Condition	CTR	N
1	Control (default Chrome warning)	67.9%	17,479
2	Chrome warning with policeman	68.9%	17,977
3	Chrome warning with criminal	66.5%	18,049
4	Chrome warning with traffic light	68.8%	18,084
5	Mock Firefox	56.1%	20,023
6	Mock Firefox, no image	55.9%	19.297
7	Mock Firefox with corporate styling		

Table 1. Click-through rates and sample size for conditions.

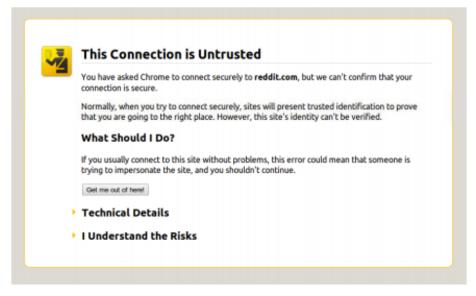
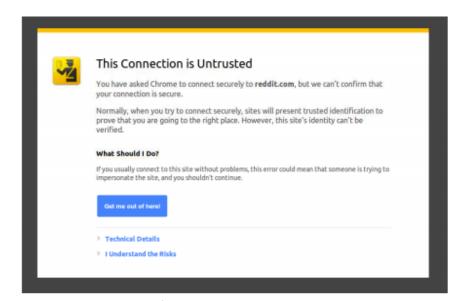
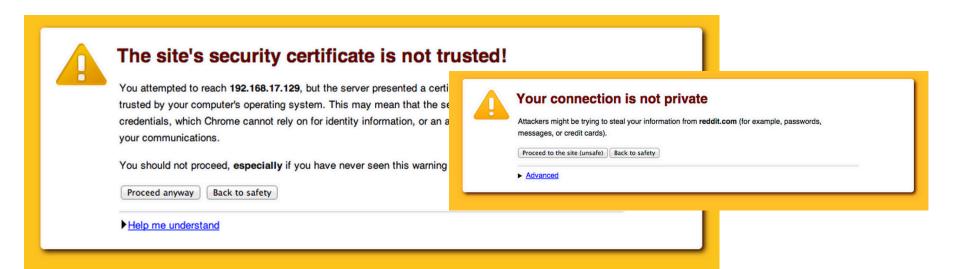
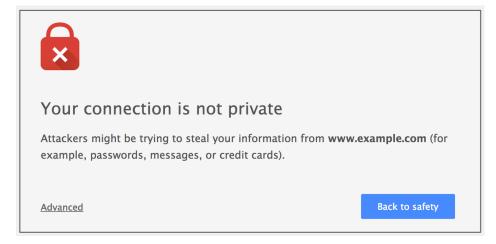



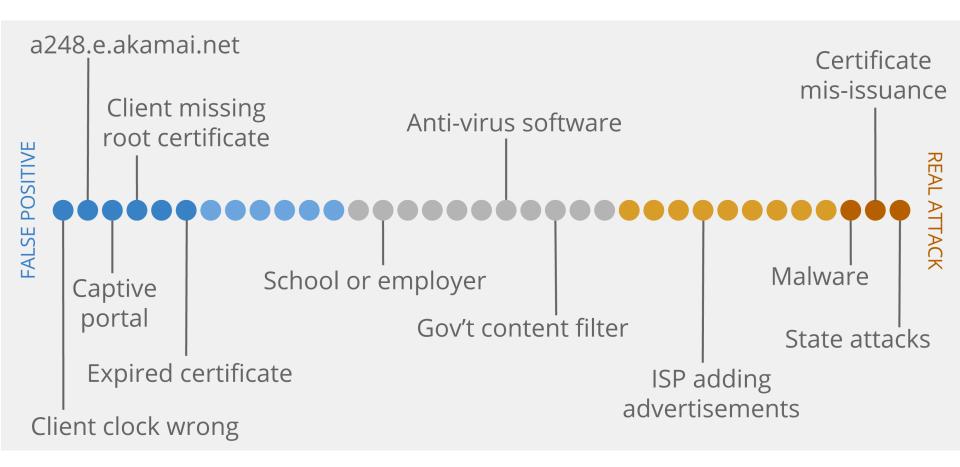
Figure 2. The mock Firefox SSLP warning (Condition 5).

#	Condition	CTR	N
1	Control (default Chrome warning)	67.9%	17,479
2	Chrome warning with policeman	68.9%	17,977
3	Chrome warning with criminal	66.5%	18,049
4	Chrome warning with traffic light	68.8%	18,084
5	Mock Firefox	56.1%	20,023
6	Mock Firefox, no image	55.9%	19,297
7	Mock Firefox with corporate styling	55.8%	19,845
	Table 1. Click-through rates and sample size	for condit	ions.



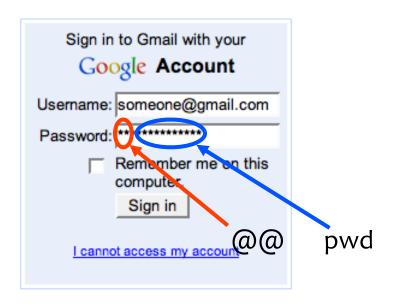

Opinionated Design Helps!

Adherence	N
30.9%	4,551


Opinionated Design Helps!

Adherence	N
30.9%	4,551
32.1%	4,075
58.3%	4,644

Challenge: Meaningful Warnings



Case Study #3: Password Managers

- Password managers handle creating and "remembering" strong passwords
- Potentially:
 - Easier for users
 - More secure
- Examples:
 - PwdHash (Usenix Security 2005)
 - Password Multiplier (WWW 2005)

PwdHash

Password Multiplier

@@ in front of passwords to protect; or F2

Activate with Alt-P or double-click

sitePwd = Hash(pwd,domain)

sitePwd = Hash(username, pwd, domain)

Prevent phishing attacks

Both solutions target simplicity and transparency.

Usability Testing

- Are these programs usable? If not, what are the problems?
- Two main approaches for evaluating usability:
 - Usability inspection (no users)
 - Cognitive walkthroughs
 - Heuristic evaluation
 - User study
 - Controlled experiments
 - Real usage

Task Completion Results

	Success	Potentially Causing Security Exposures				
		Dangerous		Failures		
		Success	Failure	Failure False Failed due Completion Previous		
PwdHash						
Log In	48%	44%	8%	0%	N/A	
Migrate Pwd	42%	35%	11%	11%	N/A	
Remote Login	27%	42%	31%	0%	N/A	
Update Pwd	19%	65%	8%	8%	N/A	
Second Login	52%	28%	4%	0%	16%	
Password Multiplier						
Log In	48%	44%	8%	0%	N/A	
Migrate Pwd	16%	32%	28%	20%	N/A	
Remote Login	N/A	N/A	N/A	N/A	N/A	
Update Pwd	16%	4%	44%	28%	N/A	
Second Login	16%	4%	16%	0%	16%	

Problem: Transparency

- Unclear to users whether actions successful or not.
 - Should be obvious when plugin activated.
 - Should be obvious when password protected.
- Users feel that they should be able to know their own password.

Problem: Mental Model

- Users seemed to have misaligned mental models
 - Not understand that one needs to put "@@" before each password to be protected.
 - Think different passwords generated for each session.
 - Think successful when were not.
 - Not know to click in field before Alt-P.
 - Don't understand what's happening: "Really, I don't see how my password is safer because of two @'s in front"

When "Nothing Works"

- Tendency to try all passwords
 - A poor security choice phishing site could collect many passwords!
 - May make the use of PwdHash or Password Multiplier worse than not using any password manager.
- Usability problem leads to security vulnerabilities.
 - Theme in course: sometimes things designed to increase security can also increase other risks

Question

• Q. What are the root causes of usability issues in computer security?

Issue #1: Complexities, Lack of Intuition

Real World

We can see, understand, relate to.

Electronic World

Too complex, hidden, no intuition.

Issue #1: Complexities, Lack of Intuition

- Mismatch between perception of technology and what really happens
 - Public keys?
 - Signatures?
 - Encryption?
 - Message integrity?
 - Chosen-plaintext attacks?
 - Chosen-ciphertext attacks?
 - Password management?

— ...

Issue #2: Who's in Charge?

Real World

Electronic World

Users want to feel like they're in control.

Where analogy breaks down: Adversaries in the electronic world can be intelligent, sneaky, and malicious.

Complex, hidden, but doctors manage

Complex, hidden, and users manage

Issue #2: Who's in Charge?

- Systems developers should help protect users
 - Usable authentication systems
 - Usable privacy settings (e.g., on social media)
 - User-driven access control
- Software applications help users manage their applications
 - Anti-virus software
 - Anti-web tracking browser add-ons
 - PwdHash, Keychain for password management
 - Some say: Can we trust software for these tasks?

Issue #3: Hard to Gauge Risks

"It won't happen to me!" (Sometimes a reasonable assumption, sometimes not.)

Schneier on Security

A weblog covering security and security technology.

<u>« The Emergence of a Global Infrastructure for Mass Registration and Surveillance | Main | PDF Redacting Failure »</u>

May 02, 2005

Users Disabling Security

It's an old <u>story</u>: users disable a security measure because it's annoying, allowing an attacker to bypass the measure.

A accused in a deadly courthouse rampage was able to enter the chambers of the judge slain in the attack and hold the occupants hostage because the door was unlocked and a buzzer entry system was not activated, a sheriff's report says.

Security doesn't work unless the users want it to work. This is true on the personal and national scale, with or without technology.

a

Issue #4: No Accountability

- Issue #3 is amplified when users are not held accountable for their actions
 - E.g., from employers, service providers, etc.
 - (Not all parties will perceive risks the same way)
- Also, recall that a user's poor security choices may affect other people
 - E.g., compromise account of user with weak password, then exploit a local (rather than remote) vulnerability to get root access

Issue #5: Annoying, Awkward, or Difficult

- Difficult
 - Remembering 50 different, "random" passwords
- Awkward
 - Lock computer screen every time leave the room
- Annoying
 - Browser warnings, virus alerts, forgotten passwords, firewalls

- Consequence:
 - Changing user's knowledge may <u>not</u> affect their behavior

Issue #6: Social Issues

- Public opinion, self-image
 - Only "nerds" or the "super paranoid" follow security guidelines
- Unfriendly
 - Locking computers suggests distrust of co-workers
- Annoying
 - Sending encrypted emails that say, "what would you like for lunch?"

Issues with Usability

1. Lack of intuition

See a safe, understand threats. Not true for computers.

2. Who's in charge?

Doctors keep your medical records safe, you manage your passwords.

3. Hard to gauge risks

— "It would never happen to me!"

4. No accountability

Asset-holder is not the only one you can lose assets.

5. Awkward, annoying, or difficult

6. Social issues

Question

• Q. What approaches can we take to mitigate usability issues in computer security?

Response #1: Education and Training

- Education:
 - Teaching technical concepts, risks
- Training
 - Change behavior through:
 - Drill
 - Monitoring
 - Feedback
 - Reinforcement
 - Punishment
- May be <u>part</u> of the solution but not <u>the</u> solution

Response #2: Security Should Be Invisible

- Security should happen
 - Naturally
 - By Default
 - Without user input or understanding
- Recognize and stop bad actions
- Starting to see some invisibility
 - SSL/TLS
 - VPNs
 - Automatic Security Updates
 - User-driven access control

Response #2: Security Should Be Invisible

- "Easy" at extremes, or for simple examples
 - Don't give everyone access to everything
- But hard to generalize
- Leads to things not working for reasons user doesn't understand
- Users will then try to get the system to work, possibly further <u>reducing</u> security
 - E.g., "dangerous successes" for password managers

Response #3: "3 Word UI": "Are You Sure?"

- Security should be invisible
 - Except when the user tries something dangerous
 - In which case a warning is given
- But how do users evaluate the warning? Two realistic cases:
 - Always heed warning. But see problems / commonality with Response #2 ("security should be invisible")
 - Always ignore the warning. If so, then how can it be effective?

Response #4: Focus on Users, Use Metaphors

- Clear, understandable metaphors:
 - Physical analogs; e.g., red-green lights
- User-centered design: Start with user model
- Unified security model across applications
 - User doesn't need to learn many models, one for each application
- Meaningful, intuitive user input
 - Don't assume things on user's behalf
 - Figure out how to ask so that user can answer intelligently

Response #5: Least Resistance

- "Match the most comfortable way to do tasks with the least granting of authority"
 - Ka-Ping Yee, <u>Security and Usability</u>
- Should be "easy" to comply with security policy
- "Users value and want security and privacy, but they regard them only as secondary to completing the primary tasks"
 - Karat et al, <u>Security and Usability</u>