CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography (+ Web Security): Certificates

Spring 2015

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Advantages of Public Key Crypto

- Confidentiality without shared secrets
 - Very useful in open environments
 - Can use this for key establishment, with fewer "chickenor-egg" problems
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
- Authentication without shared secrets
 - Use digital signatures to prove the origin of messages
- Encryption keys are public, but must be sure that Alice's public key is really her public key
 - This is a hard problem...

Disadvantages of Public Key Crypto

- Calculations are 2-3 orders of magnitude slower
 - Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - E.g., IPsec, SSL, SSH, ...
- Keys are longer
 - 1024+ bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - What if factoring is easy?
 - Factoring is believed to be neither P, nor NP-complete
 - (Of course, symmetric crypto also rests on unproven assumptions...)

Authenticity of Public Keys

<u>Problem</u>: How does Alice know that the public key she received is really Bob's public key?

Threat: Man-In-The-Middle (MITM)

Distribution of Public Keys

- Public announcement or public directory
 - Risks: forgery and tampering
- Public-key certificate
 - Signed statement specifying the key and identity
 - sig_{CA}("Bob", PK_B)
- Common approach: certificate authority (CA)
 - Single agency responsible for certifying public keys
 - After generating a private/public key pair, user proves his identity and knowledge of the private key to obtain CA's certificate for the public key (offline)
 - Every computer is <u>pre-configured</u> with CA's public key

Trusted Certificate Authorities

Hierarchical Approach

- Single CA certifying every public key is impractical
- Instead, use a trusted root authority
 - For example, Verisign
 - Everybody must know the public key for verifying root authority's signatures
- Root authority signs certificates for lower-level authorities, lower-level authorities sign certificates for individual networks, and so on
 - Instead of a single certificate, use a certificate chain
 - sig_{Verisign}("AnotherCA", PK_{AnotherCA}), sig_{AnotherCA}("Alice", PK_A)
 - What happens if root authority is ever compromised?

You encounter this every day...

SSL/TLS: Encryption & authentication for connections

(More on this later!)

Example of a Certificate

X.509 Certificate

Many Challenges...

- Hash collisions
- Weak security at CAs
 - Allows attackers to issue rogue certificates
- Users don't notice when attacks happen
 - We'll talk more about this later
- Etc...

https://mail.google.com/mail/u/0/#inbox

Colliding Certificates

DigiNotar is a Dutch Certificate Authority. They sell SSL certificates.

Attacking CAs

Security of DigiNotar servers:

- All core certificate servers controlled by a single admin password (Prod@dm1n)
- Software on publicfacing servers out of date, unpatched
- No anti-virus (could have detected attack)

Somehow, somebody managed to get a rogue SSL certificate from them on **July 10th**, **2011**. This certificate was issued for domain name **.google.com**.

What can you do with such a certificate? Well, you can impersonate Google — assuming you can first reroute Internet traffic for google.com to you. This is something that can be done by a government or by a rogue ISP. Such a reroute would only affect users within that country or under that ISP.

Consequences

- Attacker needs to first divert users to an attackercontrolled site instead of Google, Yahoo, Skype, but then...
 - For example, use DNS to poison the mapping of mail.yahoo.com to an IP address
- ... "authenticate" as the real site
- ... decrypt all data sent by users
 - Email, phone conversations, Web browsing

More Rogue Certs

 In Jan 2013, a rogue *.google.com certificate was issued by an intermediate CA that gained its authority from the Turkish root CA TurkTrust

- TurkTrust accidentally issued intermediate CA certs to customers who requested regular certificates
- Ankara transit authority used its certificate to issue a fake
 *.google.com certificate in order to filter SSL traffic from its network
- This rogue *.google.com certificate was trusted by every browser in the world

Certificate Revocation

- Revocation is <u>very</u> important
- Many valid reasons to revoke a certificate
 - Private key corresponding to the certified public key has been compromised
 - User stopped paying his certification fee to this CA and CA no longer wishes to certify him
 - CA's private key has been compromised!
- Expiration is a form of revocation, too
 - Many deployed systems don't bother with revocation
 - Re-issuance of certificates is a big revenue source for certificate authorities

Certificate Revocation Mechanisms

- Certificate revocation list (CRL)
 - CA periodically issues a signed list of revoked certificates
 - Credit card companies used to issue thick books of canceled credit card numbers
 - Can issue a "delta CRL" containing only updates
- Online revocation service
 - When a certificate is presented, recipient goes to a special online service to verify whether it is still valid
 - Like a merchant dialing up the credit card processor

Attempt to Fix CA Problems: Convergence

Background observation:

 Attacker will have a hard time mounting man-in-themiddle attacks against all clients around the world

• Basic idea:

- Lots of nodes around the world obtaining SSL/TLS certificates from servers
- Check responses across servers, and also observe unexpected changes from existing certificates

http://convergence.io/

Keybase

Basic idea:

- Rely on existing trust of a person's ownership of other accounts (e.g., Twitter, GitHub, website)
- Each user publishes signed proofs to their linked account

Verifying myself: I am franziroesner on Keybase.io. 5YGG83pd-i4zvvxl2dDUHDMrOouRG386Q_tZ / keybase.io/franziroesner/...

★ ‡3 ★ ill ••••
11:14 PM - 19 Nov 2014

https://keybase.io/

Cryptography Summary

- Goal: Privacy
 - Symmetric keys:
 - One-time pad, Stream ciphers
 - Block ciphers (e.g., DES, AES) → modes: EBC, CBC, CTR
 - Public key crypto (e.g., Diffie-Hellman, RSA)
- Goal: Integrity
 - MACs, often using hash functions (e.g, MD5, SHA-256)
- Goal: Privacy and Integrity
 - Encrypt-then-MAC
- Goal: Authenticity (and Integrity)
 - Digital signatures (e.g., RSA, DSS)