CSE 484 / CSE M 584: Computer Security and Privacy

Cryptography: Asymmetric Cryptography [continued]

Spring 2015

Franziska (Franzi) Roesner franzi@cs.washington.edu

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, Yoshi Kohno, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Public Key Crypto: Basic Problem

<u>Given</u>: Everybody knows Bob's public key
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob

2. Bob wants to authenticate himself

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- Public info: p and g
 - p is a large prime number, g is a generator of Z_p*
 - Z_p *={1, 2 ... p-1}; $\forall a \in Z_p$ * $\exists i$ such that $a=g^i \mod p$
 - Modular arithmetic: numbers "wrap around" after they reach p

Compute
$$k=(g^y)^x=g^{xy} \mod p$$

Compute
$$k=(g^x)^y=g^{xy} \mod p$$

Why is Diffie-Hellman Secure?

- Discrete Logarithm (DL) problem:
 given g^x mod p, it's hard to extract x
 - There is no known <u>efficient</u> algorithm for doing this
 - This is <u>not</u> enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem: given g^x and g^y, it's hard to compute g^{xy} mod p
 - ... unless you know x or y, in which case it's easy
- Decisional Diffie-Hellman (DDH) problem: given g^x and g^y , it's hard to tell the difference between $g^{xy} \mod p$ and $g^r \mod p$ where r is random

Properties of Diffie-Hellman

- Assuming DDH problem is hard (depends on choice of parameters!), Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between the established key and a random value
 - Can use the new key for symmetric cryptography
- Diffie-Hellman protocol (by itself) does not provide authentication

Requirements for Public Key Encryption

- Key generation: computationally easy to generate a pair (public key PK, private key SK)
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to learn anything about M from C without SK
 - Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

- Euler totient function φ(n) (n≥1) is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
 - Easy to compute for primes: $\varphi(p) = p-1$
 - Note that $\varphi(ab) = \varphi(a) \varphi(b)$
- Euler's theorem: if $a \in Z_n^*$, then $a^{\varphi(n)}=1 \mod n$ Z_n^* : integers relatively prime to n

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

- Key generation:
 - Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
 - Compute n=pq and $\varphi(n)=(p-1)(q-1)$
 - Choose small e, relatively prime to $\varphi(n)$
 - Typically, e=3 (can be vulnerable) or $e=2^{16}+1=65537$
 - Compute unique d such that ed = 1 mod $\varphi(n)$
 - Modular inverse: $d = e^{-1} \mod \varphi(n)$
 - Public key = (e,n); private key = (d,n)
- Encryption of m: c = m^e mod n
- Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$

Why RSA Decryption Works

```
e·d=1 mod \varphi(n), thus e·d=1+k·\varphi(n) for some k
Let m be any integer in Z_n* (not all of Z_n)
c^{d} \mod n = (m^{e})^{d} \mod n = m^{1+k \cdot \varphi(n)} \mod n
            = (m \mod n) * (m^{k \cdot \varphi(n)} \mod n)
Recall: Euler's theorem: if a \in \mathbb{Z}_n^*, then a^{\varphi(n)}=1 \mod n
c^{d} \mod n = (m \mod n) * (1 \mod n)
            = m \mod n
```

Proof omitted: True for all m in Z_n, not just m in Z_n*

Why is RSA Secure?

- RSA problem: given c, n=pq, and e such that $gcd(e, \varphi(n))=1$, find m such that $m^e=c \mod n$
 - In other words, recover m from ciphertext c and public key (n,e) by taking eth root of c modulo n
 - There is no known efficient algorithm for doing this
- Factoring problem: given positive integer n, find primes $p_1, ..., p_k$ such that $n=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$
- If factoring is easy, then RSA problem is easy (knowing factors means you can compute d = inverse of e mod (p-1)(q-1))
 - It may be possible to break RSA without factoring n -- but if it is, we don't know how

RSA Encryption Caveats

- Encrypted message needs to be interpreted as an integer less than n
- Don't use RSA directly for privacy output is deterministic! Need to pre-process input somehow
- Plain RSA also does <u>not</u> provide integrity
 - Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M, encrypt $M \oplus G(r)$; $r \oplus H(M \oplus G(r))$

r is random and fresh, G and H are hash functions

Digital Signatures: Basic Idea

<u>Given</u>: Everybody knows Bob's <u>public key</u> Only Bob knows the corresponding private key

Goal: Bob sends a "digitally signed" message

- 1. To compute a signature, must know the private key
- 2. To verify a signature, only the public key is needed

RSA Signatures

- Public key is (n,e), private key is (n,d)
- To sign message m: s = m^d mod n
 - Signing & decryption are same underlying operation in RSA
 - It's infeasible to compute s on m if you don't know d
- To verify signature s on message m: verify that se mod n = (m^d)e mod n = m
 - Just like encryption
 - Anyone who knows n and e (public key) can verify signatures produced with d (private key)
- In practice, also need padding & hashing
 - Standard padding/hashing schemes exist for RSA signatures

DSS Signatures

- Digital Signature Standard (DSS)
 - U.S. government standard (1991, most recent rev. 2013)
- Public key: (p, q, g, y=g^x mod p), private key: x
- Security of DSS requires hardness of discrete log
 - If could solve discrete logarithm problem, would extract x (private key) from g^x mod p (public key)

Advantages of Public Key Crypto

- Confidentiality without shared secrets
 - Very useful in open environments
 - Can use this for key establishment, with fewer "chickenor-egg" problems
 - With symmetric crypto, two parties must share a secret before they can exchange secret messages
- Authentication without shared secrets
 - Use digital signatures to prove the origin of messages
- Encryption keys are public, but must be sure that Alice's public key is really her public key
 - This is a hard problem...

Disadvantages of Public Key Crypto

- Calculations are 2-3 orders of magnitude slower
 - Modular exponentiation is an expensive computation
 - Typical usage: use public-key cryptography to establish a shared secret, then switch to symmetric crypto
 - E.g., IPsec, SSL, SSH, ...
- Keys are longer
 - 1024+ bits (RSA) rather than 128 bits (AES)
- Relies on unproven number-theoretic assumptions
 - What if factoring is easy?
 - Factoring is believed to be neither P, nor NP-complete
 - (Of course, symmetric crypto also rests on unproven assumptions...)