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Public Key Crypto: Basic Problem

public key

public key

| private key

Given: Everybody knows Bob’ s public key
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself
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Diffie-Hellman Protocol (1976)

 Alice and Bob never met and share no secrets

* Publicinfo:pandg
— pis alarge prime number, g is a generator of Z*
* Z,*={1,2... p1}; Va€ Z,* Ji suchthata=g'modp
* Modular arithmetic: numbers “wrap around” after they reach p

Pick secret, random X Pick secret, randomY
gX mod D v
>, €
gY mod p
<€
Alice Bob
Compute kz(gy)ngxy mod p Compute kz(gx)yzgxy mod p
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Why is Diffie-Hellman Secure?

* Discrete Logarithm (DL) problem:
given g* mod p, it’s hard to extract x

— There is no known efficient algorithm for doing this

— This is not enough for Diffie-Hellman to be secure!
* Computational Diffie-Hellman (CDH) problem:
given g* and g, it’s hard to compute g*’mod p
— ... unless you know x or vy, in which case it’s easy
* Decisional Diffie-Hellman (DDH) problem:
given g* and g, it’s hard to tell the difference between
g*'mod p and g"mod p where r is random
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Properties of Diffie-Hellman

* Assuming DDH problem is hard (depends on choice of
parameters!), Diffie-Hellman protocol is a secure key
establishment protocol against passive attackers

— Eavesdropper can’t tell the difference between the
established key and a random value

— Can use the new key for symmetric cryptography

* Diffie-Hellman protocol (by itself) does not provide
authentication
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Requirements for Public Key Encryption

* Key generation: computationally easy to generate
a pair (public key PK, private key SK)

* Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=E, (M)

 Decryption: given ciphertext C=E,.(M) and private
key SK, easy to compute plaintext M
— Infeasible to learn anything about M from C without SK
— Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

 Euler totient function ¢(n) (n21) is the number of
integers in the [1,n] interval that are relatively prime to n

— Two numbers are relatively prime if their greatest
common divisor (gcd) is 1

— Easy to compute for primes: ¢(p) = p-1
— Note that ¢(ab) = @(a) ¢(b)

* Euler’s theorem: if a € Z_*, then a®™=1 mod n
Z.*: integers relatively prime to n
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RSA cryptOSYStem [Rivest, Shamir, Adleman 1977]

— Generate large primes p, q
* Say, 1024 bits each (need primality testing, too)

— Compute n=pq and ¢(n)=(p-1)(g-1)
— Choose small e, relatively prime to ¢(n)
* Typically, e=3 (can be vulnerable) or e=2+1=65537

— Compute unique d such that ed = 1 mod ¢(n)
e Modularinverse: d = e" mod ¢(n)

— Public key = (e,n); private key = (d,n)
’ of m: c=m®modn
. of ¢ c®“modn=(me)¥modn=m
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Why RSA Decryption Works

e-d=1 mod ¢(n), thus e-d=1+k-¢p(n) for some k

Let m be any integer in Z,* (not all of Z»)
=(m®)¥mod n = m"*k ¥ mod n
= (m mod n) * (m* ®™ mod n)

Recall: Euler’s theorem: if a€Z_*, then a¢(")

= (m mod n) * (1 mod n)
=m mod n

Proof omitted: True for all min Z, not just min Z,*
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Why is RSA Secure?

RSA problem: given ¢, n=pq, and e such that
gcd(e, p(n))=1, find m such that m®=c mod n

— In other words, recover m from ciphertext c and public key (n,e) by
taking e root of ¢ modulo n

— There is no known efficient algorithm for doing this

* Factoring problem: given positive integer n, find primes
pv coey Pk SUCh that n:p1e1pzez.” pkek

* If factoring is easy, then RSA problem is easy (knowing
factors means you can compute d = inverse of e mod (p-1)(g-1))
— It may be possible to break RSA without factoring n - but if it is, we
don’t know how
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RSA Encryption Caveats

* Encrypted message needs to be interpreted as an
integer less than n

* Don’t use RSA directly for privacy — output is
deterministic! Need to pre-process input somehow

* Plain RSA also does not provide integrity
— Can tamper with encrypted messages

In practice, OAEP is used: instead of encrypting M,
encrypt M@OG(r) ; rOH(M®G(r))

— ris random and fresh, G and H are hash functions
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Digital Signatures: Basic Idea

public key

€= —— - / : | private key

public key

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, only the public key is needed
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RSA Signatures

* Public key is (n,e), private key is (n,d)

* Tosignmessage m: s=m"modn
— Signing & decryption are same underlying operation in RSA
— It’s infeasible to compute s on mif you don’t know d

* To verify signature s on message m:
verify that s mod n = (m9°¢mod n=m

— Just like encryption
— Anyone who knows n and e (public key) can verify signatures
produced with d (private key)

* In practice, also need padding & hashing
— Standard padding/hashing schemes exist for RSA signatures
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DSS Signatures

» Digital Signature Standard (DSS)

— U.S. government standard (1991, most recent rev. 2013)
* Public key: , private key:

* Security of DSS requires hardness of discrete log

— If could solve discrete logarithm problem, would extract
x (private key) from g mod p (public key)
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Advantages of Public Key Crypto

* Confidentiality without shared secrets
— Very useful in open environments

— Can use this for key establishment, with fewer “chicken-
or-egg” problems

* With symmetric crypto, two parties must share a secret before
they can exchange secret messages

* Authentication without shared secrets
— Use digital signatures to prove the origin of messages

* Encryption keys are public, but must be sure that
Alice’s public key is really her public key

— This is a hard problem...
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Disadvantages of Public Key Crypto

* (Calculations are 2-3 orders of magnitude slower
— Modular exponentiation is an expensive computation

— Typical usage: use public-key cryptography to establish a shared
secret, then switch to symmetric crypto

* E.g., IPsec, SSL, SSH, ...
* Keys are longer
— 1024+ bits (RSA) rather than 128 bits (AES)

* Relies on unproven number-theoretic assumptions

— What if factoring is easy?
* Factoring is believed to be neither P, nor NP-complete

— (Of course, symmetric crypto also rests on unproven
assumptions...)
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