
CSE	484	/	CSE	M	584
Computer	Security:
Buffer	Overflows	II

TA:	Adrian	Sham
adrsham@cs

Original	slides	by	Franzi

Lab	1	Deadline	Reminders

• Lab	1	Checkpoint	(Sploits 1-3) due	Oct	20th	at	5pm!
– Turn	in	text	file	of	md5sums	for	sploits 1-3

• Lab	1	Final	due	in	two	weeks	(Oct	30th,	5pm).
• If	you	don’t	have	a	group	or	access	yet,	talk	to	me	
today!

• Upcoming	office	hours:
– Tomorrow	(Friday)	9:00am	– Gabe	and	Bo	(CSE	220)
– Wednesday	11:30	am	– Yoshi	(CSE	558)
– Tuesdays	2:00pm	– Adrian	and	Kiron (CSE	006)

8a4d47b908dc53f760e8fa51b02bd440 sploit1.c
545879cf5523e93be9a693111ee967e8 sploit2.c
1cea0ba2bb9b5bb0fafe448a8a7bf0df sploit3.c

Lab	1	Notes/Hints

• If	you	get	stuck,	move	on!
• Don’t	procrastinate on	Sploits 4-7.	Some	of	them	
are	much	harder.

• Sploit 3:	No	frame	pointer,	so	you	can	only	
change	last	byte	of	saved	EIP. Think	about	an	
existing	instruction	you	could	point	to	that	would	
have	desirable	side	effects.

• You	have	more	than	one	copy	of	your	buffer:	(1)	
as	argument	to	function,	(2)	where	it	gets	copied.

• Sploit 4	is	not	necessarily	harder	than	Sploit 3.

Sploit 5	Tips

• Buffer	copied	to	the	heap.
• Target	5	uses	the	implementation	that’s	found	
in	~/sources/tmalloc.c.

• Read	“Once	upon	a	free()”:	
http://www.phrack.org/issues.html?issue=57
&id=9&mode=txt

Dynamic	Memory	Management	in	C

• Memory	allocation:	malloc(size_t n)
– Allocates	n	bytes	and	returns	a	pointer	to	the	
allocated	memory;	memory	not	cleared.

• Memory	deallocation: free(void	*	p)
– Frees	the	memory	space	pointed	to	by	p,	which	
must	have	been	returned	by	a	previous	call	to	
malloc()	 (or	similar).

– If	free(p)	has	been	called	before	(“double	free”),	
undefined	behavior	occurs.

– If	p	is	null,	no	operation	is	performend.

(Some	memory	management	slides	adapted	from	Vitaly Shmatikov)

Target5:	What’s	the	problem?
char *p; char *q;

if ((p = tmalloc(160)) == NULL)
{ exit(EXIT_FAILURE); }

if ((q = tmalloc(160)) == NULL)
{exit(EXIT_FAILURE); }

tfree(p);
tfree(q);

if ((p = tmalloc(320)) == NULL)
{exit(EXIT_FAILURE); }

obsd_strlcpy(p, arg, 320);

tfree(q);

p	(160)

q	(160)

p	(320)

“Undefined”	behavior	 		
on	second	free()

Free	Chunks	(as	used	in	tmalloc.c)

• Chunks	organized	into	doubly-linked	list.
• Each	chunk	on	list	contains	forward/back	pointers	to	
next/previous	chunks in	the	list.
– LSB	of	right	pointer	contains	free	bit.
– Adjacent	free	chunks	are	consolidated.

User	Data

Allocated	Chunk Free	Chunk

Previous	pointer

Next	pointer

Unused	space	(not	cleared)

Previous	pointer

Next	pointer 0 1

Chunk	Maintenance
One	big	

free	chunk:

Split	to	malloc:

Split	to	malloc
(twice):

Free	(twice):

Consolidate	
free	chunks:

Chunks	in	tmalloc.c

• Lines	20-28	give	chunk	structure:

• Look	at	chunk	consolidation	in	tfree(p):
q = p->s.l;

…
q->s.r = p->s.r;
p->s.r->s.l = q;

• Goal:	populate	(fake)	chunks	appropriately.

Ptr to	Left Ptr to	Right Data

Hey	look,	if	we	control	
chunks	p	(and	q),	this	code	
will	write	the	value	of	q	
(address	of	buffer?)	to	a	
location	we	specify	
(location	of	saved	EIP?).

Format	string	Vulnerability	(6)

Credit:	http://www.cis.syr.edu/~wedu/Teaching/cis643/LectureNotes_New/Format_String.pdf

General	Questions?

