Whitebox Fuzzing

David Molnar

Microsoft Research

Problem: Security Bugs in File Parsers
Ongoing challenge for Microsoft ecosystem

2 0. 0ffice

Hundreds of file formats are
supported in Windows, Office, et al.

Many written in C/C++

Programming errors = security bugs!

To catch “million dollar bugs,”

every team at Microsoft employs
random “fuzz testing”

Fuzzing finds 1000s of bugs!

Every security patch costs Microsoft
alone one million dollars.

Traditional random fuzz testing
can’t catch this bug:

int obscure(int x, int y) {
it (x==hash(y)) error();
return 0;

}

int foo(int x) { // x is an input
int v = x + 3;
if (v == 13) abort(); // error
return 0;

}

int foo(int x) { // x is an input
int v = x + 3;
if (v == 13) abort (); // error
return 0;

}

Random choice of x: one chance in 2232 to find error
“Fuzz testing” Widely used, remarkably effective!

int foo(int x) { // x is an input
int vy = x + 3;
if (v == 13) abort (); // error
return 0;

}

Core idea:

1) Pick an arbitrary “seed” input

2) Record path taken by program executing on “seed”

3) Create symbolic abstraction of path and generate tests

int foo(int x) { // x is an input
int v = x + 3;
if (v == 13) abort (); // error
return 0;

}

Example:

1) Pick xto be 5
2) Recordy =543 =8, record program tests “8 ?= 13"
3) Symbolic path condition: “x+ 3 !1=13"

How SAGE Works

void top(char input[4])
input = “good”

{ Genl
int cnt = 0: Path constraint:
if (input[0] == ‘b’) cnt++; [Tol= b’} > I=‘b’ | bood
if Ginput[1] == ‘a@’) cnt++; [I;!="a’| > I;="a’ gaod

\
if (input[2] == ‘d’) cnt++; |I,!=°d’| > I,="d’ “T—=godd
if (input[3] == ‘!’) cnt++; 13!=‘§’ > I_,,L;‘!’ goo!
1f (cnt >= 4) crash(Q); ’
() QO MSR'’s Z3 g00d
1 constraint solver

Create new constraints to cover new paths
Solve new constraints = new inputs

How SAGE Works

void top(char input[4])

{ input = “badd- Genl Gen2 Gen3 Gen4
int cnt = 0: Path constraint:
if (Ginput[0] == ‘b’) cnt++; Ipl="b’ &> I="b’
if (input[l] == ‘a’) cnt++; Iyl="a’ & I;='a’
if Ginput[2] == ‘d’) cnt++; I,l=d’ 2 I,="d’
if (input[3] == “!’) cnt++; T,0=*1" > I,=°1"

if (cnt >= 4) crash(Q);

}

Create new constraints to cover new paths SAGE finds the crash!
Solve new constraints = new inputs

void top(char input[4])

1
int cnt = 0;
1t (input[0] = 'b") cnt+s;
1t (input[l] == "a’) cnt+s;
it (input[2] = ‘d’) cnt++;
it (input[3] = "!7) cnt+s;
it (cnt == 3) crash();

¥

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4
good goo! godd god!gaod gao! gadd gad! bood boo! bodd bod! baod bao! badd bad!

Work with x86 binary code on Windows

l1l:movw . . .
Leverage full-instruction-trace recording
mnmow
shl Pros:
inz * |fyoucanrunit, you can analyze it
S Don’t care about build processes
4 Don’t care if source code available
1V
Is this
Cons:
Is eax . - * Lose programmer’s intent (e.g. types)

* Hard to “see” string manipulation,
memory object graph manipulation, etc.

SHLD—Double Precision Shift Left (Continued)

Operation

COUNT < COUNT MOD 32;
SIZE « OperandSize
IF COUNT =0

Fl;

THEN

no operation

ELSE

IF COUNT = SIZE

FI;

THEN (* Bad parameters *)
DEST is undefined; — e - =
CF, OF, SF, ZF, AF, PF ale undefined. |
ELSE (* Perform the shift *) = == == == J
CF « BIT[DEST, SIZE ~ COUNT];
(* Last bit shifted out on exit *)
FOR i « SIZE - 1 DOWNTO COUNT
DO
Bit(DEST, i) «— Bit(DEST, i — COUNT);
0D,
FOR | < COUNT -1 DOWNTO 0
DO
BIT[DEST, i] « BIT[SRC, i = COUNT + SIZE],
OD;

Bit Vector[X] Instruction Bit Vector[Y]

Inp, . ? —> Op;

Inp, : —> Op,,

Hand-written models (so far)
Uses Z3 support for non-linear operations

Normally “concretize” memory accesses where
address is symbolic

instructions executed 1,455,506.956

instr. executed after 1st read from file 028.718.575
constraints generated (full path constraint) 25,958
constraints dropped due to cache hits 244,170
constraints dropped due to limit exceeded 193,953

constraints satisfiable (= # new tests) 2,980
constraints unsatisfiable 22,978
constraint solver timeouts (>5 secs) 0
symbolic execution time (secs) 2.745
constraint solving time (secs) 953

> TN

Check for
Crashes
(AppVerifier)

Code
Coverage
(Nirvana)

Coverage
Data

SAGE: A Whitebox Fuzzing Tool

Constraints

Binary
Analysis to
Generate
Constraints
(TruScan)

\/_

—

>

Solve
Constraints
(23)

00000000h: 00
00000010h: 00
00000020h: 00
00000030h: 00
00000040h: 00
00000050h: 0O
000000&0h: 00

00
00
00
00
00
00
00

00
00
00
00
00
00
00

00
00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

00
00
00
00
00
00

iiiiiiiiiiiiiiii

llllllllllllllll

iiiiiiiiiiiiiiii

Generation 0 — seed file

00000000hN:
00000010h:
000000Z0h:
00000030h:
00000040h:
00000050h:
0000006&0hN:

52
00
00
00
00
00
00

49
00
00
00
00
00
00

46
00
00
00
00
00
00

46
00
00
00
00
00
00

3D
00
00
73
13
00

00
00
00
74
74
00

00
00
00

-~
i

12
00

00
00
00
68
66
00

* %

00
00
00

x®

00
00
00

xE

00
00
00

20 00
00 00
00 00
00 76

BZ U5 _Je 3A128
00 00 00 00 01

00
00
00
69
00
00

00
00
00
64
00
00

00
00
00
73
00
00

el]

"
F

iiiiiiiiiiiiiiii

llllllllllllllll

.e..5trh....vids

....EtIWHHﬁI[...

Generation 10 — crash bucket 1212954973/

Research Behind SAGE

Precision in symbolic execution:
Scaling to billions of instructions:
Checking many properties together:
Grammars for complex input formats:
Strategies for dealing with path explosion:
Reasoning precisely about pointers:
Floating-point instructions:
Input-dependent loops:

+ research on constraint solvers (Z3)

Challenges: from Research to Production

1) Symbolic execution on long traces

2) Fast constraint generation and solving
3) Months-long searches

4) Hundreds of test drivers & file formats
5) Fault-tolerance

A Single Symbolic Execution of an Office App

of instructions executed 1.45 billion
instructions after reading from file 928 million
constraints in path constraint 25,958
constraints dropped due to optimizations 438,123
of satisfiable constraints = new tests 2,980
of unsatisfiable constraints 22,978
of constraint solver timeouts (> 5 seconds) 0
Symbolic execution time 45 minutes 45 seconds

Constraint solving time 15 minutes 53 seconds

SAGAN and SAGECloud for Telemetry and Management

How bugs were found
(Win7 WEX Security)

Regression + aj| Others SAGE
Random testing

Hundreds of machines / VMs on average
Hundreds of applications on thousands of “seed files”

share for crashes Over 500 machine-years of whitebox fuzzing!
bug triage %
>

T Yionlofolol

Challenges: From Research to Production

1) Symbolic execution on long traces
SAGAN telemetry points out imprecision

2) Fast constraint generation and solving
SAGAN sends back long-running constraints

3) Months-long searches
JobCenter monitors progress of search

4) Hundreds of test drivers & file formats
JobCenter provisions apps and configurations in SAGECloud

5) Fault-tolerance
SAGAN telemetry enables quick response

Feedback From Telemetry At Scale
Any test anywhere helps every test everywhere!

Most common branch

1 20000 .
How much sharlpg \ appears 17761 times
between symbolic 15000 out of 290430
execution of different% 10000 \ 9 symbolic executions.
programs run on o k\ Motivates symbolic
Windows? SN~ summaries built up
e e e e e e e e e over time.
s— = | 90.18% of Z3 queries
How does the Z3 g - 4 I= solved in 0.1
solver performon wepp "R - | [g —) seconds or less.
constraints arising @ E== ?olv!ngttlrr:e_r S;EII”
from real code? . =— ominates: 1€lis us
S e where to focus Z3.

Leverage data collection to create virtuous cycle of improvement!
Answer questions and pursue directions impractical without scale.

Key Analyses Enabled by Data

Imprecision in Symbolic Execution

Incompleteness Events

TruscanTaskUUID opa |countseverity

29d01195-e621-4591-8a93-110a40705505/opaFld 361 HIGH
29d01195-e621-4591-8a93-110a40705505/opaJa 948 HIGH
29d01195-e621-4591-8a93-110a40705505 opaJac 50 HIGH
29d0195-e621-4591-8a93-110a40705505 opalb 128 HIGH

l

Incompleteness Events

SageRunUUID taintfilter
672c4801-a542-4ctd-b894-caa97e9c56a6

672¢4801-a542-4¢cfd-b894-caa97e9¢56a6
672¢4801-a542-4¢fd-b894-caa%97e9¢56a6
672¢4801-a542-4¢cfd-b894-caa97e9¢56a6

TruscanTaskUUID opa |counfseverity SageRunUUID taintfilter

20223aff-a8d5-4729-ae11-35197375¢9¢7 opaSetae 16 FIXED 1052ea51-6272-4408-ab82-3598¢f9505¢9
20223aff-a8d5-4729-ae11-35197375e9¢7 opaSetge 2 FIXED |1052¢a51-272-4408-ab82-3598¢f9505€9
20223aff-a8d5-4729-ae11-35197375¢9¢7 opaShl 26 |FDZED 1052ea51-¢272-4408-ab82-3598¢9505¢9
20223aff-a8d5-4729-ae11-35197375¢9¢7 opaShr 228 FIXED |1052ea51-¢272-4408-ab82-3598¢9505¢9

Distribution of crashes in the search

New crashes
found

1 2 3 45 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21 22 23

Days

Constraints generated by symbolic execution

300000

86.26%
100.00% 100.00%
99.21% 99.90%

250000 L |
(
200000
symbolic
executions
150000

100000

50000

0-20 20-200 200-2000 2000-20000 20000-2000000 >2000000 # constraints

B Frequency -#-Cumulative %

Time to solve constraints

constraints

90000

80000

70000

60000

50000

40000

30000

20000

10000

98.21

% 99.18% 100.00% 100.00% 100.00%

90.18% of Z3 queries
solved in 0.1
seconds or less.

Long-running queries
sent back, tell us
where to focus Z3.

0.001 0.005 0.01 0.05 0.1 0.5 1 30

B Frequency --Cumulative %

60 60 Seconds

Optimizations In Constraint Generation

e Sound

 Common subexpression elimination on every new constraint
* Crucial for memory usage

* “Related Constraint Optimization”

e Unsound

* Constraint subsumption
e Syntactic check for implication, take strongest constraint

* Drop constraints at same instruction pointer after threshold

Ratio between SAT and UNSAT constraints

symbolic
executions

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

100.00%

80.79%

O U

5.18%
9.54%

62.31%

1.33%

10-20

20-30 30-40 40-50 50-60 60-70

70-80 80-90 90-100

mm Frequency -#-Cumulative %

% constraints SAT

Long-running tasks can be pruned!

r'y

0.82%

symbolic execution time

8

solver time

Sharing Between Symbolic Executions

20000
18000
16000
14000
12000
L0000
28000
&000
L0040

2000

o, S | — -
- o o

iy D =" = =) S0 O T
Yy MY e 0 = e e

Y I = =
o P = O 0O @O 9 On [= TR =

P =) L
=y = = =

Sampled runs on Windows, many different file-reading applications
Max frequency 17761, min frequency 592
Total of 290430 branches flipped, 3360 distinct branches

Summaries Leverage Sharing

 Redundancy in searches

* Redundancy in paths

* Redundancy in different versions of same application

* Redundancy across applications
* How many times does Excel/Word/PPT/... call mso.dll ?

 Summaries (POPL 2007): avoid re-doing this unnecessary work
* SAGAN data shows redundancy exists in practice

Reflections

* Data invaluable for driving investment priorities
e Can’t cover all x86 instructions by hand — look at which ones are used!
* Recent: synthesizing circuits from templates (Godefroid & Taly PLDI 2012)
* Plus finds configuration errors, compiler changes, etc. impossible otherwise

e Data can reveal test programs have special structure

* Scaling to long traces needs careful attention to representation
* Sometimes run out of memory on 4 GB machine with large programs

e Even incomplete, unsound analysis useful because whole-program
e SAGE finds bugs missed by all other methods

e Supporting users & partners super important, a lot of work!

Impact In Numbers

* 100s of apps, 100s of bugs fixed

* 3.5+ billion constraints
 Largest computational usage ever for any SMT solver

* 500+ machine-years

SAGE-like tools outside Microsoft

* KLEE http://klee.github.io/klee/
* FuzzGrind http://esec-lab.sogeti.com/pages/Fuzzgrind
* SmartFuzz

Thanks to all SAGE contributors!

» MSR: Ella Bounimova, Patrice Godefroid, David Molnar
(+ our managers for their support! ©)

® CSE: Michael Levin, Chris Marsh, Lei Fang, Stuart de Jong,...

® Interns : Dennis Jeffries (06), David Molnar (07), Adam Kiezun (07), Bassem Elkarablieh (08),
Marius Nita (08) , Cindy Rubio-Gonzalez (08,09), Johannes Kinder (09), Daniel Luchaup (10),
Mehdi Bouaziz (11), Ankur Taly (11), Gena Pekhimenko (12), Maria Christakis (13),...

® Z3 (MSR): Nikolaj Bjorner, Leonardo de Moura,...

» Windows: Nick Bartmon, Eric Douglas, Dustin Duran, Elmar Langholz , Isaac Sheldon, Dave
Weston,...

®» Win8 TruScan support: Evan Tice, David Grant,...
» Office: Tom Gallagher, Eric Jarvi, Octavian Timofte, Mike Caldwell...
» MSEC: Dan Margolis, Matt Miller, Lars Opstad, Jason Shirk, Dazhi Zhang...
® SAGE users all across Microsoft!

Questions? dmolnar@microsoft.com

